Laser-Fabricated Crystals in Glass are Ferroelectric
January 30, 2019 | Lehigh UniversityEstimated reading time: 2 minutes

A team of researchers from Lehigh University, Oak Ridge National Laboratory, Lebanon Valley College and Corning Inc. has demonstrated, for the first time that crystals manufactured by lasers within a glass matrix maintain full ferroelectric functionality.
“This includes the ability to uniformly orient and reverse orient the ferroelectric domains with an electric field―despite the fact that the crystal is strongly confined by the surrounding glass,” says Volkmar Dierolf, chair of Lehigh University’s Department of Physics and one of the scientists who worked on the experiments that resulted in these findings.
Dierolf, who holds a joint appointment with Lehigh’s Department of Materials Science and Engineering part of the P.C. Rossin College of Engineering and Applied Science, is co-Principal Investigator on a National Science Foundation (NSF)-funded project, Crystal in Glass, along with Principal Investigator Himanshu Jain, Diamond Distinguished Chair of Lehigh’s Department of Materials Science and Engineering. The group has become a world leader in producing single crystals in glass by localized laser irradiation. Read more about their work: “Crossing a critical threshold” and “Lehigh scientists fabricate a new class of crystalline solid.”
The team conducted the first detailed examination of the piezoelectric and ferroelectric properties of laser induced crystals confined in glass. They found that the as-grown crystals possess a complex ferroelectric domain structure that can be manipulated via the application of a DC bias. The findings have been published online in MRS Communications in a paper called “Ferroelectric domain engineering of lithium niobate single crystal confined in glass.”
“The findings open up the possibility of a new collection of optical devices that use fully functional laser-fabricated crystals in glass which rely on the precise control of the ferroelectric domain structure of the crystal,” said Keith Veenhuizen, currently Assistant Professor, Department of Physics at Lebanon Valley College and the lead author of the paper, which builds on the work he did as a graduate student at Lehigh.
Applications for such technology include use in modern fiber optic technology used for data transmission.
“Being able to embed such functional single crystal architectures within a glass enables high efficiency coupling to existing glass fiber networks,” says Dierolf. “Such low loss links―that maximize performance―are of particular importance for future quantum information transfer system that are projected to take over the current schemes for optical communication,” adds Dierolf.
In addition to Dierolf, Jain and Veenhuizen, the paper’s co-authors are: Sean McAnany, Department of Materials Science and Engineering, Lehigh University; Rama Vasudevan, Stephen Jesse and Sergei V. Kalinin, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; and, Daniel Nolan and Bruce Aitken, Corning Incorporated.
Financial support for this research is provided by the National Science Foundation via the GOALI program for collaboration between Lehigh University and Corning Incorporated (DMR-1508177).
By: Lori Friedman
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.