Controlling Charge Flow by Managing Electron Holes
February 7, 2019 | U.S. Department of Energy, Office of ScienceEstimated reading time: 2 minutes

Much remains to be learned about how charge moves along the molecules that make up the layers of materials in solar cells. These details have remained hidden because of the challenges of direct, real-time observation of motion of electrons and their holes at interfaces where two solar-cell materials meet.
Image Caption: Researchers use extreme ultraviolet pulses (fuchsia line) to determine how visible light (blue line) causes interfacial hole (h+) transfer from iron oxide (Fe2O3) to nickel oxide (NiO), a hole collection layer commonly found in hybrid perovskite solar cells.
Using ultrafast extreme ultraviolet pulses, researchers watched as holes were injected across the interface materials found in hybrid perovskite solar cells. The bursts of extreme ultraviolet light were only femtoseconds in duration. The bursts allowed ultrafast, element-specific measurements.
The experiments revealed what states of the nickel atom are the primary hole-acceptors (Physical Chemistry Chemical Physics, "Identifying the acceptor state in NiO hole collection layers: Direct observation of exciton dissociation and interfacial hole transfer across a Fe2O3/NiO heterojunction").
Learning how charge moves in the material layers of solar cells could reveal missing design parameters. These parameters could let scientists control how charge moves inside solar panels or LEDs, including future designs based on novel materials.
Detailed knowledge of real-time motion of charge in solar-cell materials could help scientists and engineers design better solar cells. Here, scientists need to manage both electrons and the holes that are left behind. Specifically, they need a way to collect and move electron holes, the spots where electrons could be but aren’t.
But there’s a problem. The surface states of oxide materials that facilitate hole transfer are hard to study because it is difficult to probe directly between layers of materials, and the charge dynamics are extremely fast, making it difficult to follow them in real time.
Researchers devised a new way of examining charge transport within layered materials. Their new approach let them watch in real time how holes form and how the resulting electrons move, and they demonstrated the method by characterizing the interface formed with nickel oxide atop iron oxide.
The method employs extreme ultraviolet reflection–absorption spectroscopy using tiny bursts of extreme ultraviolet light only a few femtoseconds in duration. The short bursts allow real-time measurement of electron dynamics, and the burst energy allows element-specific measurements within layered materials.
They found that a transient nickel ion (Ni3+) forms after sunlight excites the underlying iron oxide layer. This tells the researchers how the holes in the nickel oxide work. In addition, the team’s work showed that holes are injected into the nickel oxide layer via a two-step process starting with a fast, field-driven exciton (electron-hole pair) dissociation in the iron layer.
With this research, scientists revealed the chemical nature of the hole acceptor state in nickel oxide. Also, they showed how exciton dissociation and interfacial hole transfer occur at the interface of nickel oxide and iron oxide, a model interface.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.