AI May Be Better for Detecting Radar Signals, Facilitating Spectrum Sharing
February 21, 2019 | NISTEstimated reading time: 2 minutes
 
                                                                    When vacationers buy a stake in a beachfront timeshare, they decide in advance who gets to use the property when. The National Institute of Standards and Technology (NIST) is helping the Federal Communications Commission (FCC) institute a similar plan for when commercial wireless providers and the U.S. Navy attempt to share a desirable 150-megahertz (MHz)-wide section of the radio frequency (RF) spectrum for communications.
In a new paper, NIST researchers demonstrate that deep learning algorithms—a form of artificial intelligence—are significantly better than a commonly used, less sophisticated method for detecting when offshore radars are operating. Improved radar detection would enable commercial users to know when they must yield the so-called 3.5 Gigahertz (3.5 GHz) Band.
In 2015, the FCC adopted rules for the Citizens Broadband Radio Service (CBRS) to permit commercial LTE (long-term evolution) wireless equipment vendors and service providers to use the 3.5 GHz Band when not needed for radar operations.
Companies such as AT&T, Google, Nokia, Qualcomm, Sony and Verizon have been eager to access this band (between 3550 and 3700 MHz) because it will expand product markets and give end users better coverage and higher data rate speeds in a variety of environments where service is traditionally weak.
NIST helped develop 10 standard specifications that enable service providers and other potential users to operate in the 3.5 GHz Band under FCC regulations while assuring the Navy that the band can be successfully shared without RF interference. These standard specifications, including the algorithm for protecting military incumbent users, were approved in February 2018 by the Wireless Innovation Forum Spectrum Sharing Committee (WINNF SSC), the public-private standards body for the CBRS. However, there are presently no official standards for determining when the military is using the band. The new study, reported in the journal IEEE Transactions on Cognitive Communications and Networking, represents the latest NIST research effort toward achieving that goal.
In current practice, radar signals from ships at sea are identified using automated detectors that look for energy rises in the electromagnetic spectrum. “However,” said Michael Souryal, lead for the NIST spectrum sharing support project, “these energy detectors are not discriminating enough to consistently get it right, sometimes confusing other RF signals as radar or missing the radar signatures altogether.”
Souryal and his colleagues turned to artificial intelligence (AI) for a potential solution. Eight deep learning algorithms—software systems that learn from pre-existing data—were trained to recognize offshore radar signals from a collection of nearly 15,000 60-second-long spectrograms (visual representations of the radar signals over time). These spectrograms were recorded in 2016 near naval bases in San Diego, California, and Virginia Beach, Virginia, for the National Advanced Spectrum and Communications Test Network (NASCTN).
After training, the deep learning algorithms were pitted against energy detectors to see which performed best at identifying and classifying a set of spectrograms different from the ones used to educate the AI detectors.
“We found that three of the deep learning algorithms appreciably outperformed the energy detectors,” Souryal said.
The best deep learning algorithm and the spectrogram collection were used to develop 3.5 GHz Band "occupancy statistics," datasets that describe when the band is available and for how long.
Now that the NIST researchers have validated the use of the deep learning algorithms, they plan to continue refining the AI detectors by training them with higher-resolution, more-detailed radar data, which they believe should lead to even better performance.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
SAIC Announces CEO Transition
10/28/2025 | SAICScience Applications International Corporation, a premier Fortune 500® company driving our nation's digital transformation across the defense, space, civilian, and intelligence markets, today announced that the Company’s Board of Directors has appointed James (Jim) Reagan as Interim Chief Executive Officer, effective immediately. Mr. Reagan succeeds Toni Townes-Whitley.
Barnes Completes Separation Into Two Companies: Barnes Aerospace and The Industrial Solutions Group
10/28/2025 | BUSINESS WIREBarnes Group Inc., which was acquired by funds managed by affiliates of Apollo in January, announced that it has successfully separated into two companies, Barnes Aerospace and The Industrial Solutions Group, each with its own leadership team and capital structure.
Saab, the Swedish Armed Forces Extend Gripen Maintenance Contract
10/13/2025 | SaabSaab and the Swedish Armed Forces have extended an existing contract and Saab has received an order for support- and maintenance services for Gripen C/D and E. The order value is approximately SEK 4 billion and deliveries will take place 2026 to 2027.
RTX Unveils new APG-82(V)X Radar Enhanced with Gallium Nitride
09/25/2025 | RTXRaytheon, an RTX business, has unveiled the latest iteration of its combat-proven APG-82 radar, the APG-82(V)X. The new radar variant incorporates cutting-edge gallium nitride (GaN) technology to enhance the radar's effectiveness, delivering increased range, advanced air-to-air, air-to-ground and electronic warfare capabilities.
U.S. Army Awards $13M IDIQ Contract to Element U.S. Space & Defense
09/11/2025 | BUSINESS WIREElement U.S. Space & Defense, a trusted leader in advanced testing and engineering services, has been awarded a multi-year indefinite-delivery/indefinite-quantity (IDIQ) contract valued at $13,021,816 from United States Army Contracting Command - Aberdeen Proving Ground (ACC-APG).

 
                         
                                     
                                     
                                     
                                     
                                             
                                             
                                             
                                             
                                             
                                     
                                             
                                             Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
                                         Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production It’s Only Common Sense: Your Biggest Competitor Is Complacency
                                         It’s Only Common Sense: Your Biggest Competitor Is Complacency The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible
                                         The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible





 
                     
                 
                    