New Measurement Technique for Topological Quantum Systems
February 22, 2019 | Universität HamburgEstimated reading time: 2 minutes

Researchers at Universität Hamburg have demonstrated a new scheme for measuring the topological index of a system. The index describes the topological nature of materials and influences certain properties such as the conductivity.
Image Caption: The experiments were performed with ultracold atoms in optical lattices formed by standing waves of light. The researchers subject the system to an additional circular drive and then determine the topology from how fast the system heats up. Illustration: UHH/Sengstock group
Among the branches of mathematics, geometry is the one that deals with local properties of shapes like distances, angles and curvatures, while topology classifies shapes according to global properties. The pivotal question is, whether a shape can be continuously deformed into another without cutting or gluing it. The number of holes in a surface, for example, cannot change under continuous deformation.
Geometry and topology apply also to quantum states, because they characterize certain properties. Topological indices are of particular interest: analogous to the number of holes in a surface, which can only take integer values, these integers describe the topology of the system. A well-known example are quantum Hall systems, where the conductivity takes on integer values, because it is dictated by the topological index.
The experimental team around Prof. Klaus Sengstock and Dr. Christof Weitenberg from the cluster of excellence “Advanced Imaging of Matter” has now demonstrated a new scheme to measure the topological index. They collaborated with the theory team led by Dr. Nathan Goldman from the Free University of Brussels, who provided the theoretical background for the new measurement scheme.
The experiments were performed with ultracold atoms in optical lattices formed by standing waves of light. These atoms behave like electrons in a solid-state crystal and can therefore emulate phenomena of solid-state physics. The researchers induced the topological properties by periodically driving the systems, a scheme that other researchers in Hamburg use for inducing topology in graphene sheets by illuminating with laser light. As a result, the index changed from 0 to 1 or -1. For the measurement scheme, the researchers subject the system to an additional drive and then observe how fast the system heats up. From these excitation rates it was possible to obtain the topological index of the system.
“This is a promising result,” Weitenberg explains. “It could help us to detect novel topological states of matter, first realized with ultracold atoms. However, the method can be applied to real materials as well.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
AV Switchblade 600 Loitering Munition System Achieves Pivotal Milestone with First-Ever Air Launch from MQ-9A
09/12/2025 | BUSINESS WIREAeroVironment, Inc. (AV) a global leader in intelligent, multi-domain autonomous systems, announced its Switchblade 600 loitering munition system (LMS) has achieved a significant milestone with its first-ever air launch from an MQ-9A Reaper Unmanned Aircraft System (UAS).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.