Mini Cheetah Is the First Four-Legged Robot to Do a Backflip
March 4, 2019 | MITEstimated reading time: 6 minutes

MIT’s new mini cheetah robot is springy and light on its feet, with a range of motion that rivals a champion gymnast. The four-legged powerpack can bend and swing its legs wide, enabling it to walk either right-side up or upside down. The robot can also trot over uneven terrain about twice as fast as an average person’s walking speed.
Weighing in at just 20 pounds — lighter than some Thanksgiving turkeys — the limber quadruped is no pushover: When kicked to the ground, the robot can quickly right itself with a swift, kung-fu-like swing of its elbows.
Perhaps most impressive is its ability to perform a 360-degree backflip from a standing position. Researchers claim the mini cheetah is designed to be “virtually indestructible,” recovering with little damage, even if a backflip ends in a spill.
MIT's new mini cheetah robot is the first four-legged robot to do a backflip. At only 20 pounds, the limber quadruped can bend and swing its legs wide, enabling it to walk either right side up or upside down. The robot can also trot over uneven terrain about twice as fast as an average person's walking speed.
Video: Melanie Gonick/MIT
In the event that a limb or motor does break, the mini cheetah is designed with modularity in mind: Each of the robot’s legs is powered by three identical, low-cost electric motors that the researchers engineered using off-the-shelf parts. Each motor can easily be swapped out for a new one.
“You could put these parts together, almost like Legos,” says lead developer Benjamin Katz, a technical associate in MIT’s Department of Mechanical Engineering.
The researchers will present the mini cheetah’s design at the International Conference on Robotics and Automation, in May. They are currently building more of the four-legged machines, aiming for a set of 10, each of which they hope to loan out to other labs.
“A big part of why we built this robot is that it makes it so easy to experiment and just try crazy things, because the robot is super robust and doesn’t break easily, and if it does break, it’s easy and not very expensive to fix,” says Katz, who worked on the robot in the lab of Sangbae Kim, associate professor of mechanical engineering.
Kim says loaning mini cheetahs out to other research groups gives engineers an opportunity to test out novel algorithms and maneuvers on a highly dynamic robot, that they might not otherwise have access to.
“Eventually, I’m hoping we could have a robotic dog race through an obstacle course, where each team controls a mini cheetah with different algorithms, and we can see which strategy is more effective,” Kim says. “That’s how you accelerate research.”
“Dynamic Stuff”
The mini cheetah is more than just a miniature version of its predecessor, Cheetah 3, a large, heavy, formidable robot, which often needs to be stabilized with tethers to protect its expensive, custom-designed parts.
“In Cheetah 3, everything is super integrated, so if you want to change something, you have to do a ton of redesign,” Katz says. “Whereas with the mini cheetah, if you wanted to add another arm, you could just add three or four more of these modular motors.”
Katz came up with the electric motor design by reconfiguring the parts to small, commercially available motors normally used in drones and remote-controlled airplanes.
Each of the robot’s 12 motors is about the size of a Mason jar lid, and consists of: a stator, or set of coils, that generates a rotating magnetic field; a small controller that conveys the amount of current the stator should produce; a rotor, lined with magnets, that rotates with the stator’s field, producing torque to lift or rotate a limb; a gearbox that provides a 6:1 gear reduction, enabling the rotor to provide six times the torque that it normally would; and a position sensor that measures the angle and orientation of the motor and associated limb.
Each leg is powered by three motors, to give it three degrees of freedom and a huge range of motion. The lightweight, high-torque, low-inertia design enables the robot to execute fast, dynamic maneuvers and make high-force impacts on the ground without breaking gearboxes or limbs.
“The rate at which it can change forces on the ground is really fast,” Katz says. “When it’s running, its feet are only on the ground for something like 150 milliseconds at a time, during which a computer tells it to increase the force on the foot, then change it to balance, and then decrease that force really fast to lift up. So it can do really dynamic stuff, like jump in the air with every step, or run with two feet on the ground at a time. Most robots aren’t capable of doing this, so move much slower.”
Page 1 of 2
Suggested Items
Stocks Tumble as Nvidia Warns of Major Hit From U.S.-China Export Curbs
04/17/2025 | I-Connect007 Editorial TeamU.S. stocks slid sharply Wednesday after Nvidia warned that new U.S. export restrictions on chips to China could slash billions from its revenue, deepening investor anxiety over the broader economic fallout of President Donald Trump’s ongoing trade war.
Samsung and Google Cloud Expand Partnership
04/09/2025 | PRNewswireSamsung Electronics Co., Ltd and Google Cloud today announced an expanded partnership to bring Google Cloud's generative AI technology to Ballie, a new home AI companion robot from Samsung.
Insulectro Technology Village to Feature 35 Powerchats at IPC APEX EXPO 2025
03/11/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, will present its popular and successful 13.5-minute PowerChats™ during this year’s IPC APEX EXPO at the Anaheim Convention Center, March 18-20, 2025.
Drip by Drip: Semiconductor Water Management Innovations
03/05/2025 | IDTechExNot only does semiconductor manufacturing require large volumes of energy, chemicals, and silicon wafers, it also requires vast volumes of water. IDTechEx’s latest report, “Sustainable Electronics and Semiconductor Manufacturing 2025-2035: Players, Markets, Forecasts”, forecasts water usage across semiconductor manufacturing to double by 2035, as demand for integrated circuits continues to rise.
Pusan National University Develops One-Step 3D Microelectrode Technology for Neural Interfaces
02/28/2025 | PRNewswireNeural interfaces are crucial in restoring and enhancing impaired neural functions, but current technologies struggle to achieve close contact with soft and curved neural tissues. Researchers at Pusan National University have introduced an innovative method—microelectrothermoforming (μETF)—to create flexible neural interfaces with microscopic three-dimensional (3D) structures.