Addressing the Promises and Challenges of AI
March 4, 2019 | MITEstimated reading time: 6 minutes
For Institute Professor Robert Langer, another panelist in “Computing for the Marketplace,” AI holds great promise for early disease diagnoses. With enough medical data, for instance, AI models can identify biological “fingerprints” of certain diseases in patients. “Then, you can use AI to analyze those fingerprints and decide what … gives someone a risk of cancer,” he said. “You can do drug testing that way too. You can see [a patient has] a fingerprint that … shows you that a drug will treat the cancer for that person.”
But in the “Computing the Future” section, David Siegel, co-chair of Two Sigma Investments and founding advisor for the MIT Quest for Intelligence, addressed issues with data, which is at the heart of AI. With the aid of AI, Siegel has seen computers go from helpful assistants to “routinely making decisions for people” in business, health care, and other areas. While AI models can benefit the world, “there is a fear that we may move in a direction that’s far from an algorithmic utopia.”
Siegel drew parallels between AI and the popular satirical film “Dr. Strangelove,” in which an “algorithmic doomsday machine” threatens to destroy the world. AI algorithms must be made unbiased, safe, and secure, he said. That involves dedicated research in several important areas, at the MIT Schwarzman College of Computing and around the globe, “to avoid a Strangelove-like future.”
One important area is data bias and security. Data bias, for instance, leads to inaccurate and untrustworthy algorithms. And if researchers can guarantee the privacy of medical data, he added, patients may be more willing to contribute their records to medical research.
Siegel noted a real-world example where, due to privacy concerns, the Centers for Medicare and Medicaid Services years ago withheld patient records from a large research dataset being used to study substance misuse, which is responsible for tens of thousands of U.S. deaths annually. “That omission was a big loss for researchers and, by extension, patients,” he said. “We are missing the opportunity to solve pressing problems because of the lack of accessible data. … Without solutions, the algorithms that drive our world are at high risk of becoming data-compromised.”
Seeking Humanity in AI
In a panel discussion earlier in the day, “Computing: Reflections and the Path Forward,” Sherry Turkle, the Abby Rockefeller Mauzé Professor of the Social Studies of Science and Technology, called on people to avoid “friction free” technologies — which help people avoid stress of face-to-face interactions.
AI is now “deeply woven into this [friction-free] story,” she said, noting that there are apps that help users plan walking routes, for example, to avoid people they dislike. “But who said a life without conflict - makes for the good life?” she said.
She concluded with a “call to arms” for the new college to help people understand the consequences of the digital world where confrontation is avoided, social media are scrutinized, and personal data are sold and shared with companies and governments: “It’s time to reclaim our attention, our solitude, our privacy, and our democracy.”
Speaking in the same section, Patrick H. Winston, the Ford Professor of Engineering at MIT, concluded on an equally humanistic — and optimistic — message. After walking the audience through the history of AI at MIT, including his run as director of the Artificial Intelligence Laboratory from 1972 to 1997, he told the audience he was going to discuss the greatest computing innovation of all time.
“It’s us,” he said, “because nothing can think like we can. We don’t know how to make computers do it yet, but it’s something we should aspire to. … In the end, there’s no reason why computers can’t think like we [do] and can’t be ethical and moral like we aspire to be.”
Page 2 of 2Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
SEMI Reports Global Silicon Wafer Shipments to Rebound 5.4% in 2025, with New Record Expected by 2028
10/30/2025 | SEMIGlobal shipments of silicon wafers are projected to increase 5.4% in 2025 to 12,824 million square inches (MSI) followed by steady growth through 2028 when the market is expected to reach a new industry record of 15,485 MSI, SEMI reported in its annual silicon shipment forecast. 
productronica 2025: iTAC Presents AI-supported Knowledge Platform for Connected Production
10/29/2025 | iTAC Software AGIn modern manufacturing facilities, valuable knowledge is stored in systems, documents, and the minds of employees – often fragmented, isolated, and not centrally available.
Unlocking the Promise of AI in Electronics Manufacturing
10/29/2025 | Shobhit Agrawal, Keysight TechnologiesThe electronics manufacturing industry is rapidly evolving as more complicated products are introduced in the production lines, which require technological advancements even in the production processes. The requirements for production that is efficient, product quality that is greater, and product life cycles that are shorter are more crucial than ever before. In the electronic device life cycle, from design to maintenance, test phases have a significant impact on the economy of the company. Test processes are closely linked to the production volume and impacted by the complexity of the product. For businesses to maintain their competitive edge, they need to adopt innovative solutions and redefine processes.
Better Sustainability Policies for Electronics
10/29/2025 | Diana Radovan, Global Electronics AssociationI joined the Global Electronics Association in August 2025 as the director of sustainability policy. Since then, much has happened in terms of geopolitics and in the development and re-envisioning of sustainability policies in the industry. While the European Commission has released several legislative packages to simplify sustainability requirements (“omnibus”), these developments haven’t yet settled and are not in effect. Given the many recent and ongoing public consultations, with often conflicting input from a broad range of stakeholders, final negotiations remain rather polarized among policymakers.
SEMI Reports Global Silicon Wafer Shipments to Rebound 5.4% in 2025, with New Record Expected by 2028
10/29/2025 | SEMIGlobal shipments of silicon wafers are projected to increase 5.4% in 2025 to 12,824 million square inches (MSI) followed by steady growth through 2028 when the market is expected to reach a new industry record of 15,485 MSI, SEMI reported today in its annual silicon shipment forecast.

 
                         
                                     
                                     
                                     
                                     
                                             
                                             
                                             
                                             
                                             
                                             
                                     
                                             
                                             Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
                                         Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production It’s Only Common Sense: Your Biggest Competitor Is Complacency
                                         It’s Only Common Sense: Your Biggest Competitor Is Complacency The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible
                                         The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible





 
                     
                 
                    