Nanoparticles Help Realize ‘Spintronic’ Devices
March 7, 2019 | University of TokyoEstimated reading time: 2 minutes

For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices. The team lead by Associate Professor Shinobu Ohya, created a nanoscale spintronic semiconductor device that can partially switch between specific magnetic states trillions of times a second (terahertz—THz), far beyond frequencies of devices at present.
There’s a high chance you’ve purchased a computer or smartphone sometime this decade. When you looked at the description you may have noticed the speed of such devices is often measured in gigahertz (GHz). At present most devices are around a few gigahertz. But progress accelerates and new ways are sought to increase the frequency and performance of our devices. To this end, UTokyo researchers from the Graduate School of Engineering and Graduate School of Frontier Sciences explore the emerging field of spintronics.
“I hope our research leads to spintronic-based logic and memory devices,” said Ohya. “Within decades people should see spintronic smartphones and data centers. We would realize incredible performance gains in areas such as artificial intelligence and beyond.”
Spintronics, aka “spin electronics,” exploits an intrinsic property of electrons called spin,—responsible for magnetic behavior — to perform functions. For example, computation relies on switchable states of a physical material as a way to transfer information. Famously, the 1 and 0 comprising binary code are represented by voltage levels in communication wires or magnetic states of a magnetic metal in a hard drive. The faster the switch between states, the greater the device’s performance. In spintronic devices, discrete spin magnetization states represent binary digits.
Vertical yellow lines of increasing thickness from right of frame to centre. Blue orbs with red arrows inside are to the left.
The Ohya research group successfully affected spin by 20% in under a picosecond. This is a promising technique for ultrafast nonvolatile memory devices. ©2019 Ohya Laboratory.
One way researchers create this property is to irradiate a special magnetic material with short but high-frequency pulses of terahertz radiation, similar to that of airport body scanners. The radiation flips electron spins in this material—ferromagnetic manganese arsenide (MnAs)—and thus its magnetization, in under a picosecond, three orders of magnitude quicker than transistors switch in microchips. Other researchers have attempted this before but the magnetic change in response to the pulses was only 1%, too small to be of practical use.
Now, however, Ohya and his team successfully demonstrated a larger magnitude change in magnetization of MnAs nanoparticles subjected to terahertz pulses. This greater response of 20% means it could be more useful in research and hints at possible future applications. Their trick was to take advantage of the electric component of the terahertz electromagnetic radiation rather than the magnetic component.
“Until now researchers in this area used ferromagnetic metal films to study terahertz modulation of magnetization, but these impeded the radiation’s energy,” said Ohya. “Instead we embedded our ferromagnetic nanoparticles in a semiconductor film 100 nanometers thick. This hinders the radiation far less so the terahertz electric field uniformly reaches and flips the spins, and therefore magnetization, of the nanoparticles.”
Suggested Items
Keysight Enabling University of Stuttgart to Advance 6G Integrated Circuits Research
08/10/2023 | Keysight Technologies, Inc.Keysight Technologies, Inc. is enabling the University of Stuttgart to conduct foundational research essential to development of new integrated circuits (IC) for 6G technology with the new Keysight 6G Vector Component Analysis (VCA) solution.
KSG Group Puts Horizontal OSP Line for Organic Surfaces into Operation
07/31/2023 | KSG GroupThe KSG Group has expanded its capacities in the field of organic surface coating by bringing a new wet-chemical horizontal system online.
Mil/Aero Design: Not Just Another High-Rel Board
07/25/2023 | Andy Shaughnessy, Design007 MagazineMeijing Liu, CID+, is a senior PCB designer for Microart Services, an EMS company in Markham, Ontario, Canada. She recently took a six-week military/aerospace PCB design class from IPC’s Kris Moyer, and she was surprised at how much content she was able to absorb in such a short time. I spoke with Meijing and we discussed some of her takeaways from the class, and how it has inspired her to pursue more design education in the future.
MACOM Awarded U.S. Air Force Contract for Advanced Semiconductor Development
07/20/2023 | Business WireMACOM Technology Solutions Inc., a leading supplier of semiconductor products, announced that it has been awarded a contract from the United States Air Force Research Laboratory (“AFRL”) to develop advanced semiconductor process technology related to Gallium Nitride-on-Silicon Carbide (“GaN-on-SiC”).
Standard of Excellence: Today’s Hottest Technology Trends
07/21/2023 | Anaya Vardya -- Column: Standard of ExcellenceNo matter what anyone says, printed circuit boards are the backbone of modern electronics. Without the PCB, what will the components attach to? Without advancements in printed circuit board technology, products of the future would be impossible. It is our responsibility to be there when our customers need us—today and in the future. That means recognizing the latest trends and making the most of them. Here's what I see is trending in microelectronics.