High-frequency EMC Noise in DC Circuits
May 29, 2025 | Karen Burnham, EMC UnitedEstimated reading time: 1 minute
EMC isn’t black magic, but it’s easy to understand why it seems that way. When looking at a schematic like that in Figure 1, it looks like you’re only dealing with DC signals all across the board. There’s a 28 VDC input that goes through an EMI filter, then gets converted to 12 VDC power. Except in extremely rare circumstances involving equipment sensitive to magnetostatic fields, DC electricity will never be part of an EMC problem.
Figure 1: Power conversion stage of avionics unit
Harmonics
The biggest problem occurs when you use a switching operation to convert power from one form to another—something most modern electronics do all the time. For power and thermal efficiency reasons, we want switching waveforms to get as close to a perfect square wave as possible—the faster the rise and fall time, the less loss and heating you have in the operation. The problem is that there’s a trade-off: Faster rise and fall times necessarily generate high-frequency electrical signals. Then, if provisions aren’t made for controlling the high-frequency noise signals, they can escape to cause signal integrity and EMC problems throughout the board and system.
Let’s illustrate this with a simple function generator. The beginning setting is a 5 VDC square wave switching at 20 MHz—something you might see from a board’s clock signal. In Figure 2, we see a cable connected to the function generator channel 1 output. That’s the default cable that came with the function generator, with current being run through a 50 Ω resistor between the red and black leads.
To read the entire article, which originally appeared in the May 2025 issue of Design007 Magazine, click here.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
ROHM Develops Ultra-Compact CMOS Op Amp: Delivering Industry-Leading Ultra-Low Circuit Current
09/11/2025 | ROHMROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current.
Zhen Ding Technology Highlights AI-Driven Transformation of the PCB Industry at SEMICON Taiwan 2025
09/11/2025 | Zhen Ding TechnologyArtificial intelligence (AI) is expanding rapidly, with almost no field left untouched by the wave of computing power-driven transformation.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Wisdom From Data-center Power Pioneer Mike Mosman
09/02/2025 | Barry Matties, I-Connect007Few engineers have moved the levers of modern electronics more decisively than Mike Mosman. From the pre-email computer rooms of the 1980s to today’s hyperscale campuses cranking out AI cycles, the retired power engineer and co-founder of CCG Facilities Integration has spent four decades proving that uptime is a design discipline, not a hope.
Connect the Dots: How to Avoid Five Common Causes of Board Failure
09/04/2025 | Matt Stevenson -- Column: Connect the DotsBoards fail for various reasons, and because I’ve been part of the PCB industry for a long time, I’ve seen most of the reasons for failure. As part of my ongoing crusade to help designers design for the reality of manufacturing, here are five common causes for board failure and how to avoid them.