Ion Experiment Aces Quantum Scrambling Test
March 7, 2019 | Joint Quantum InstituteEstimated reading time: 4 minutes

Researchers at the Joint Quantum Institute have implemented an experimental test for quantum scrambling, a chaotic shuffling of the information stored among a collection of quantum particles. Their experiments on a group of seven atomic ions, reported in the March 7 issue of Nature, demonstrate a new way to distinguish between scrambling—which maintains the amount of information in a quantum system but mixes it up—and true information loss. The protocol may one day help verify the calculations of quantum computers, which harness the rules of quantum physics to process information in novel ways.
“In terms of the difficulty of quantum algorithms that have been run, we’re toward the top of that list,” says Kevin Landsman, a graduate student at JQI and the lead author of the new paper. “This is a very complicated experiment to run, and it takes a very high level of control.”
The research team, which includes JQI Fellow and UMD Distinguished University Professor Christopher Monroe and JQI Fellow Norbert Linke, performed their scrambling tests by carefully manipulating the quantum behavior of seven charged atomic ions using well-timed sequences of laser pulses. They found that they could correctly diagnose whether information had been scrambled throughout a system of seven atoms with about 80% accuracy.
“With scrambling, one particle’s information gets blended or spread out into the entire system,” Landsman says. “It seems lost, but it’s actually still hidden in the correlations between the different particles.”
Quantum scrambling is a bit like shuffling a fresh deck of cards. The cards are initially ordered in a sequence, ace through king, and the suits come one after another. Once it’s sufficiently shuffled, the deck looks mixed up, but—crucially—there’s a way to reverse that process. If you kept meticulous track of how each shuffle exchanged the cards, it would be simple (though tedious) to “unshuffle” the deck by repeating all those exchanges and swaps in reverse.
Quantum scrambling is similar in that it mixes up the information stored inside a set of atoms and can also be reversed, which is a key difference between scrambling and true, irreversible information loss. Landsman and colleagues used this fact to their advantage in the new test by scrambling up one set of atoms and performing a related scrambling operation on a second set. A mismatch between the two operations would indicate that the process was not scrambling, causing the final step of the method to fail.
That final step relied on quantum teleportation—a method for transferring information between two quantum particles that are potentially very far apart. In the case of the new experiment, the teleportation is over modest distances—just 35 microns separates the first atom from the seventh—but it is the signature by which the team detects scrambling: If information is successfully teleported from one atom to another, it means that the state of the first atom is spread out across all of the atoms—something that only happens if the information is scrambled. If the information was lost, successful teleportation would not be possible. Thus, for an arbitrary process whose scrambling properties might not be known, this method could be used to test whether—or even how much—it scrambles.
The authors say that prior tests for scrambling couldn’t quite capture the difference between information being hidden and lost, largely because individual atoms tend to look similar in both cases. The new protocol, first proposed by theorists Beni Yoshida of the Perimeter Institute in Canada, and Norman Yao at the University of California, Berkeley, distinguishes the two cases by taking correlations between particular particles into account in the form of teleportation.
Page 1 of 2
Suggested Items
SMT007 Magazine July—What’s Your Competitive Sweet Spot?
07/01/2025 | I-Connect007 Editorial TeamAre you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche—what are their insights? In the July 2025 issue of SMT007 Magazine, we spotlight companies thriving by redefining or reinforcing their niche and offer insights to help you evaluate your own.
Smarter Machines Use AOI to Transform PCB Inspections
06/30/2025 | Marcy LaRont, PCB007 MagazineAs automated optical inspection (AOI) evolves from traditional end-of-process inspections to proactive, in-line solutions, the integration of AI and machine learning is revolutionizing defect reduction and enhancing yields, marking a pivotal shift in how quality is managed in manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
The Death of the Microsection
06/26/2025 | Bob Neves, Reliability Assessment Solutions, Inc.I got my start out of college grinding and polishing PCB microsections. My thumbs are a bit arthritic today because of the experience (microsection grinders know what I mean). Back then, via structures were rather large, and getting to the center in six steps of grinding and polishing was easy compared to what my team has been doing recently at the lab.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.