New Optical Imaging System Could Be Deployed to Find Tiny Tumors
March 8, 2019 | MITEstimated reading time: 4 minutes
To demonstrate the potential usefulness of this system, the researchers tracked a 0.1-millimeter-sized cluster of fluorescent nanoparticles that was swallowed and then traveled through the digestive tract of a living mouse. These probes could be modified so that they target and fluorescently label specific cancer cells.
“In terms of practical applications, this technique would allow us to non-invasively track a 0.1-millimeter-sized fluorescently-labeled tumor, which is a cluster of about a few hundred cells. To our knowledge, no one has been able to do this previously using optical imaging techniques,” Bardhan says.
Earlier Detection
The researchers also demonstrated that they could inject fluorescent particles into the body of a mouse or a rat and then image through the entire animal, which requires imaging to a depth of about 4 centimeters, to determine where the particles ended up. And in tests with human tissue-mimics and animal tissue, they were able to locate the probes to a depth of up to 8 centimeters, depending on the type of tissue.
Guosong Hong, an assistant professor of materials science and engineering at Stanford University, described the new method as “game-changing.”
“This is really amazing work,” says Hong, who was not involved in the research. “For the first time, fluorescent imaging has approached the penetration depth of CT and MRI, while preserving its naturally high resolution, making it suitable to scan the entire human body.”
This kind of system could be used with any fluorescent probe that emits light in the near-infrared spectrum, including some that are already FDA-approved, the researchers say. The researchers are also working on adapting the imaging system so that it could reveal intrinsic differences in tissue contrast, including signatures of tumor cells, without any kind of fluorescent label.
In ongoing work, they are using a related version of this imaging system to try to detect ovarian tumors at an early stage. Ovarian cancer is usually diagnosed very late because there is no easy way to detect it when the tumors are still small.
“Ovarian cancer is a terrible disease, and it gets diagnosed so late because the symptoms are so nondescript,” Belcher says. “We want a way to follow recurrence of the tumors, and eventually a way to find and follow early tumors when they first go down the path to cancer or metastasis. This is one of the first steps along the way in terms of developing this technology.
Page 2 of 2Suggested Items
Accenture Acquires SYSTEMA to Drive Manufacturing Automation for Semiconductor Clients
07/02/2025 | AccentureAccenture has acquired SYSTEMA, a provider of software solutions and consulting services for manufacturing automation, headquartered in Dresden, Germany.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.