Improving Li-Ion Batteries by Coating Their Cathode
March 12, 2019 | Tokyo TechEstimated reading time: 3 minutes
Scientists at Tokyo Tech and Okayama University found a way of greatly improving the performance of LiCoO2 cathodes in Li-ion batteries by decorating them with BaTiO3 nanodots. Most importantly, they elucidated the mechanism behind the measured results, concluding that the BaTiO3 nanodots create a special interface through which Li ions can circulate easily, even at very high charge/discharge rates.
Three cathodes were fabricated: a standard bare one (left), one coated with a layer of BaTiO3 (middle), and one coated with several BaTiO3 nanodots (right). The one with the nanodots exhibited greatly enhanced performance.
It should be no surprise to anyone that batteries have enabled countless applications related to electric and electronic devices. Nowadays, modern advances in electrical devices and vehicles have created the need for even better batteries in terms of stability, rechargeability, and charging speeds. While Li-ion batteries (LIBs) have proven to be very useful, it is not possible to charge them quickly enough with high currents without running into problems such as sudden decreases in cyclability and output capacity owing to their intrinsic high resistance and unwanted side reactions.
Figure 1. Fabricated LiCoO2 cathodes.
The negative effects of such unwanted reactions hinder LIBs using LiCoO2 (LCO) as a cathode material. One of them involves the dissolution of Co4+ ions into the electrolyte solution of the battery during charge/discharge cycles. Another effect is the formation of a solid electrolyte interface between the active material and the electrode in these batteries, which hinders the movement of Li ions and thus degrades performance.
In a previous research, scientists reported that using materials with a high dielectric constant, such as BaTiO3 (BTO), enhanced the high-rate performance of LCO cathodes. However, the mechanism behind the observed improvements was unclear. To shed light on this promising approach, a team of scientists from Tokyo Tech, led by Prof. Mitsuru Itoh, Dr. Shintaro Yasui and Mr. Sou Yasuhara, studied LCO cathodes with BTO applied in different ways to find out what happened at the BTO–LCO interface in more detail.The team created three different LCO cathodes: a bare one, one coated with a layer of BTO, and one covered with BTO nanodots (Figure 1). The team also modeled an LCO cathode with a single BTO nanodot and predicted that, interestingly, the current density close to the edge of the BTO nanodot was very high. This particular area is called the triple phase interface (BTO–LCO–electrolyte), and its existence greatly enhanced the electrical performance of the cathode covered with microscopic BTO nanodots.
As expected, after testing and comparing the three cathodes they prepared, the team found that the one with a layer of BTO dots exhibited a much better performance, both in terms of stability and discharge capacity. “Our results clearly demonstrate that decorating with BTO nanodots plays an important role in improving cyclability and reducing resistance,” states Itoh. Realizing that the BTO dots had a crucial effect on the motility of Li ions in the cathode, the team looked for an explanation.
After examining their measurements results, the team concluded that BTO nanodots create paths through which Li ions can easily intercalate/de-intercalate, even at very high charge/discharge rates (Figure 2). This is so because the electric field concentrates around materials with a high dielectric constant. Moreover, the formation of a solid electrolyte interface is greatly suppressed near the triple phase interface, which would otherwise result in poor cyclability. “The mechanism by which the formation of a solid electrolyte interface is inhibited near the triple phase interface is still unclear,” remarks Itoh.
While still much research on this topic needs to be done, the results obtained by the team are promising and might hint at a new way of greatly improving LIBs. This could be a significant step for meeting the demands of modern and future devices.
Page 1 of 2
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Molex Drives Intelligent Supply Chain Collaboration with SAP Solutions
10/24/2024 | PRNewswireMolex, a global electronics leader and connectivity innovator, announced a highly successful collaboration with SAP to unite a global community of suppliers and buyers as part of Molex's multi-year, intelligent digital supply chain transformation strategy.
Optimizing mSAP to Produce Flex for Biofluid Sensor Probes
10/17/2024 | Dean Neuburger, Sheldahl Flexible TechnologiesImprovements in flexible printed circuitry technology offer solutions that enable advancement in other technologies, enabling new circuit design and capability possibilities for customers’ applications. This article will overview advancements developed and implemented to produce a flexible circuit that meets new and challenging requirements for a customer’s medical application. This discussion will highlight development ideas more than details about the final processing scheme.
Molg Raises $5.5M in Seed Funding to Tackle Electronics Waste Through Circular Manufacturing
10/11/2024 | PRNewswireMolg Inc. announces the closing of $5.5 million in seed funding to scale the company's circular manufacturing processes for electronics and electrical components. Closed Loop Partners' Ventures Group led the round, with participation from Amazon Climate Pledge Fund,
Foxconn Reports Strong September 2024 Revenue
10/07/2024 | FoxconnHon Hai Precision Industry Co., Ltd. (Foxconn) announced its unaudited consolidated revenue for September 2024, reaching NT$528.3 billion. This marks a 12.87% month-on-month increase and a 14.44% year-on-year growth, driven by robust performance across all major product lines.