Novel Technology Aims to Improve Lithium Metal Battery Life, Safety
March 13, 2019 | Pennsylvania State UniversityEstimated reading time: 2 minutes

Rechargeable lithium metal batteries with increased energy density, performance, and safety may be possible with a newly-developed, solid-electrolyte interphase (SEI), according to Penn State researchers.
As the demand for higher-energy-density lithium metal batteries increases — for electric vehicles, smartphones, and drones — stability of the SEI has been a critical issue halting their advancement because a salt layer on the surface of the battery's lithium electrode insulates it and conducts lithium ions.
"This layer is very important and is naturally formed by the reaction between the lithium and the electrolyte in the battery," said Donghai Wang, professor of mechanical and chemical engineering. "But it doesn't behave very well, which causes a lot of problems."
One of the least-understood components of lithium metal batteries, the degradation of the SEI contributes to the development of dendrites, which are needle-like formations that grow from the lithium electrode of the battery and negatively affect performance and safety.
"This is why lithium metal batteries don't last longer — the interphase grows and it's not stable," Wang said. "In this project, we used a polymer composite to create a much better SEI."
Led by chemistry doctoral student Yue Gao, the enhanced SEI is a reactive polymer composite consisting of polymeric lithium salt, lithium fluoride nanoparticles, and graphene oxide sheets. The novel construction of this battery component has thin layers of these materials, which is where Thomas E. Mallouk, Evan Pugh University Professor of Chemistry, lent his expertise.
"There is a lot of molecular-level control that is needed to achieve a stable lithium interface," Mallouk said. "The polymer that Yue and Donghai designed reacts to make a claw-like bond to the lithium metal surface. It gives the lithium surface what it wants in a passive way so that it doesn't react with the molecules in the electrolyte. The nanosheets in the composite act as a mechanical barrier to prevent dendrites from forming from the lithium metal."
Using both chemistry and engineering design, the collaboration between fields enabled the technology to control the lithium surface at the atomic scale.
"When we engineer batteries, we don't necessarily think like chemists, all the way down to the molecular level, but that's what we needed to do here," said Mallouk.
The reactive polymer also decreases the weight and manufacturing cost, further enhancing the future of lithium metal batteries.
"With a more stable SEI, it's possible to double the energy density of current batteries, while making them last longer and be safer," Wang said.
This research represents the latest innovation generated by Wang, a member of the Institutes of Energy and the Environment (IEE) and the Battery Energy and Storage Technology (BEST) Center, a leading research institute in energy storage.
Penn State researchers Zheifei Yan, graduate student, Jennifer L. Gray, research associate, Xin He, graduate student, Daiwei Wang, graduate student, Tianhang Chen, graduate student, Qingquan Huang, post-doctoral researcher, Yuguang C. Li, graduate student, Haiying Wang, technical staff member, and Seong H. Kim, professor of chemical engineering and materials science and engineering, also contributed to the project.
The Office of Vehicle Technologies in the U.S. Department of Energy and the National Science Foundation supported this work.
Suggested Items
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.