Wearable Device Quantifies Tissue Stiffness While Preserving Surgeon’s Sense of Touch
March 14, 2019 | OSAEstimated reading time: 4 minutes

Researchers have developed the first wearable probe that enhances the sense of touch by imaging and quantifying the stiffness and elasticity of biological tissue. The device is being developed to improve the surgical removal of breast cancer and might also be useful for brain and liver surgery and other types of cancer.
Image Caption: A new wearable probe enhances the sense of touch by imaging and quantifying the stiffness and elasticity of biological tissue. The device could help improve the surgical removal of breast cancer and other types of cancer. Credit: Rowan W. Sanderson, University of Western Australia
In The Optical Society (OSA) journal Biomedical Optics Express, researchers from the University of Western Australia (UWA) describe the new device, which incorporates a fiber probe into a wearable thimble.
During breast conserving surgery, the most common surgical treatment for breast cancer, surgeons touch and compress tissue to confirm that the stiffer cancerous tissue was removed. Histopathological testing is then performed days later to ensure that the whole tumor was removed. Today, 20-30% of patients undergoing this type of surgery require another procedure because the histopathological tests show that cancerous cells remain.
“Our new probe aims to enhance the surgeon’s subjective sense of touch through quantified, high-resolution imaging of tissue stiffness,” said Rowan W. Sanderson, first author of the paper. “This could make it easier to detect and remove all the cancerous tissue during the first breast conserving surgery, which would reduce the physical and psychological burden and cost that accompanies re-excision.”
Turning Touch Into Images
The finger-mounted probe uses a technique called quantitative micro-elastography (QME) to translate the sense of touch into high-resolution images. QME uses measurements from an optical imaging technique called optical coherence tomography (OCT), which generates high-resolution, depth-resolved images of tissue structure by measuring the reflections, or ‘echoes,’ of light.
To use the device, the finger-mounted probe is pressed perpendicularly into the tissue while OCT images are recorded. “By preserving the sense of touch, we aim to conserve the existing clinical workflow and increase the likelihood that this technology would be adopted for wider clinical use,” said Sanderson.
For accurate elasticity measurements, the researchers developed new signal processing methods with custom algorithms to deal with inconsistent motion and pressure during scanning. 3D printing helped them quickly produce prototypes of the probe’s outer casing in a simple and cost-effective manner.
“Our finger-mounted probe can accurately detect microscale changes in stiffness, which are indicative of disease,” said Sanderson. “The small size makes it ideal for imaging in confined spaces such as a surgical cavity.”
Page 1 of 2
Suggested Items
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.
Technica USA and CBT Introducing TiTAN Hybrid at IPC APEX EXPO 2025
03/18/2025 | Technica USAThe wait is over! Technica and CBT are proud to unveil TiTAN Hybrid, a groundbreaking innovation set to redefine the PCB industry. Designed for unmatched performance, efficiency, and adaptability, this cutting-edge laser imaging technology brings the future to you—today.