Printed Sensors Provide on the Spot Fentanyl Detection
March 22, 2019 | UC San DiegoEstimated reading time: 1 minute

Researchers at the University of California San Diego have developed screen-printed sensors that could offer a faster, convenient and low-cost method to detect the drug fentanyl. The sensors can detect micromolar concentrations of fentanyl in just one minute. They are easy to produce, cost only a few cents apiece, and are disposable.
First responders, law enforcement officers and postal workers could use them to quickly and easily detect fentanyl in the field or workplace and avoid potentially dangerous exposures.
Current methods to classify unknown drug samples, including fentanyl, are costly and primarily done in a lab. The new sensors could allow simple, on the spot detection with disposable strips, similar to those used to monitor blood glucose, researchers said.
The work, led by Joseph Wang, a professor of nanoengineering and the director of the Center for Wearable Sensors at the UC San Diego Jacobs School of Engineering, was published in Analytical Chemistry.
The sensors work via electrochemical detection. They identify chemicals based on the voltage at which compounds are oxidized or reduced, causing a spike in electric current. And this spike generates a unique signature that researchers could use to identify drug agents like fentanyl.
Wang’s team created the sensors by screen printing electrodes onto thin polymer sheets—made of the same material used for plastic bottles and food packaging. The electrodes are treated with an ionic liquid to stabilize them and help fentanyl samples accumulate on the surface.
Screen printing drives down the cost of the technology. Each sensor costs just a few cents to make. Handheld spectrometers currently used for drug detection can cost up to tens of thousands of dollars. The sensors can also be screen printed onto fabric and other materials, making it possible for law enforcement officers to wear them on a sleeve.
In tests, the researchers applied laboratory samples of fentanyl to the sensor strips and inserted them into a handheld electrochemical analyzer. The analyzer transmits the data to a computer or tablet. Right now, researchers need to process the results on a computer in order to determine the presence and concentration of fentanyl.
The team is refining their method to produce direct readouts on the screen. They are also working on sensors that could analyze more complex drug samples.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
08/15/2025 | Marcy LaRont, I-Connect007In our industry, my top reads include Prashant Patel’s overview and argument for reshoring, which I found to be a great general overview and breakdown. In further support of the onshoring/reshoring message, I’m highlighting Nolan Johnson’s interview on the survey and report by the Reshoring Initiative. Check out my interview with USPAE’s Jim Will on the state of the flat panel display (FPD) industry and the risks associated with it for U.S. defense and critical infrastructure products.
Global Electronics Industry Remains Under Pressure from Rising Costs
08/04/2025 | Global Electronics AssociationThe global electronics manufacturing supply chain remains under pressure from rising costs, with 61% of firms reporting higher material costs and 54% noting increased labor expenses. according to the Global Electronics Association’s Sentiment of the Global Electronics Manufacturing Supply Chain Report.
Statement from the Global Electronics Association on the July 2025 Tariff on Copper Foil and Electronics-Grade Copper Inputs
07/31/2025 | Global Electronics AssociationWe are disappointed by today’s decision to impose a 50% tariff on imported copper foil and other essential materials critical to electronics manufacturing in the United States.
Direct Metallization: A Sustainable Shift in PCB Fabrication
07/31/2025 | Jim Watkowski, Harry Yang, and Mark Edwards, MacDermid Alpha Electronics SolutionsThe global electronics industry is undergoing a significant transformation, driven by the need for more resilient supply chains and environmentally sustainable manufacturing practices. Printed circuit boards (PCBs), the backbone of interconnection for electronic devices, are at the center of this shift. Traditionally, PCB fabrication has relied heavily on electroless copper, a process that, while effective, is resource-intensive and environmentally hazardous. In response, many manufacturers are turning to direct metallization technologies as a cleaner, more efficient alternative.
Considering the Future of Impending Copper Tariffs
07/30/2025 | I-Connect007 Editorial TeamThe Global Electronics Association is alerting industry members that a potential 50% tariff on copper could hit U.S. electronics manufacturers where it hurts.