New CRISPR-Powered Device Detects Genetic Mutations in Minutes
March 29, 2019 | University of California - BerkeleyEstimated reading time: 5 minutes

A team of engineers at the UC Berkeley and the Keck Graduate Institute (KGI) of The Claremont Colleges combined CRISPR with electronic transistors made from graphene to create a new hand-held device that can detect specific genetic mutations in a matter of minutes.
Image Caption: Each individual chip can be coated with Cas9 proteins equipped with different RNA guides to detect different sequences of DNA. (Keck Graduate Institute photo)
The device, dubbed CRISPR-Chip, could be used to rapidly diagnose genetic diseases or to evaluate the accuracy of gene-editing techniques. The team used the device to identify genetic mutations in DNA samples from Duchenne muscular dystrophy patients.
“We have developed the first transistor that uses CRISPR to search your genome for potential mutations,” said Kiana Aran, an assistant professor at KGI who conceived of the technology while a postdoctoral scholar in UC Berkeley bioengineering professor Irina Conboy’s lab. “You just put your purified DNA sample on the chip, allow CRISPR to do the search and the graphene transistor reports the result of this search in minutes.”
Aran, who developed this technology and brought it to fruition at KGI, is the senior author of a paper describing the device that appears online March 25 in the journal Nature Biomedical Engineering.
Doctors and geneticists can now sequence DNA to pinpoint genetic mutations underlying a host of traits and conditions, and companies like 23andMe and AncestryDNA even make these tests available to curious consumers.
But unlike most forms of genetic testing, including recently developed CRISPR-based diagnostic techniques, CRISPR-Chip uses nanoelectronics to detect genetic mutations in DNA samples without first “amplifying” or replicating the DNA segment of interest millions of times over through a time- and equipment-intensive process called polymerase chain reaction, or PCR. This means it could be used to perform genetic testing in a doctor’s office or field work setting without having to send a sample off to a lab.
“CRISPR-Chip has the benefit that it is really point of care, it is one of the few things where you could really do it at the bedside if you had a good DNA sample,” said Niren Murthy, professor of bioengineering at UC Berkeley and co-author of the paper. “Ultimately, you just need to take a person’s cells, extract the DNA and mix it with the CRISPR-Chip and you will be able to tell if a certain DNA sequence is there or not. That could potentially lead to a true bedside assay for DNA.”
CRISPR-Chip uses deactivated CRISPR-Cas9 protein, tethered to a transistor made of graphene, to detect specific genetic sequences in a DNA sample. (Graphic courtesy Kiana Aran)
Page 1 of 3
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.
Transition Automation to Showcase Expanding Line of Permalex Squeegee Products at IPC APEX EXPO
03/07/2025 | Transition AutomationTransition Automation, Inc. (TA) is exhibiting a full product range of Permalex Edge Metal Squeegees and Holder systems at this year’s IPC APEX EXPO