New ‘Blue-Green’ Solution for Recycling World’s Batteries
April 3, 2019 | Rice UniversityEstimated reading time: 4 minutes

The Rice lab of materials scientist Pulickel Ajayan used an environmentally friendly deep eutectic solvent to extract valuable elements from the metal oxides commonly used as cathodes in lithium-ion batteries. The goal, researchers said, is to curtail the use of harsh processes to recycle batteries and keep them out of landfills.
Image Caption: A solution turns green as it pulls cobalt from a spent lithium-ion cathode. A Rice University laboratory is developing an environmentally friendly method to recover valuable metals from used batteries. Photo by Jeff Fitlow
The solvent, made of commodity products choline chloride and ethylene glycol, extracted more than 90 percent of cobalt from powdered compounds, and a smaller but still significant amount from used batteries.
“Rechargeable battery waste, particularly from lithium-ion batteries, will become an increasingly menacing environmental challenge in the future as the demand for these through their usage in electric vehicles and other gadgets increases dramatically,” Ajayan said.
“It’s important to recover strategic metals like cobalt that are limited in supply and are critical for the performance of these energy-storage devices,” he said. “Something to learn from our present situation with plastics is that it is the right time to have a comprehensive strategy for recycling the growing volume of battery waste.”
“This has been attempted before with acids,” said Rice graduate student and lead author Kimmai Tran. “They’re effective, but they’re corrosive and not eco-friendly. As a whole, recycling lithium-ion batteries is typically expensive and a risk to workers.”
Other processes also have drawbacks, she said. Pyrometallurgy involves crushing and mixing at extreme temperatures, and the harmful fumes require scrubbing. Hydrometallurgy requires caustic chemicals, while other “green” solvents that extract metal ions often require additional agents or high-temperature processes to fully capture them.
“The nice thing about this deep eutectic solvent is that it can dissolve a wide variety of metal oxides,” Tran said. “It’s literally made of a chicken feed additive and a common plastic precursor that, when mixed together at room temperature, form a clear, relatively nontoxic solution that has effective solvating properties.”
A deep eutectic solvent is a mixture of two or more compounds that freezes at temperatures much lower than each of its precursors. In that way, she said, one can literally obtain a liquid from a simple combination of solids.
“The large depression of freezing and melting points is due to the hydrogen bonds formed between the different chemicals,” Tran said. “By selecting the right precursors, inexpensive ‘green’ solvents with interesting properties can be fabricated.”
When Tran joined, the Rice group was already testing a eutectic solution as an electrolyte in next-generation high-temperature supercapacitors.
“We tried to use it in metal oxide supercapacitors, and it was dissolving them,” said Rice research scientist and co-corresponding author Babu Ganguli. “The color of the solution would change.”
Image Caption: Rice University research scientist Babu Ganguli and graduate student Kimmai Tran show test tubes with their eutectic solvent and varying concentrations of cobalt drawn into the solution. They are developing the solvent to extract cobalt and lithium from spent lithium-ion batteries. Photo by Jeff Fitlow
The eutectic was pulling ions from the supercapacitor’s nickel.
“Our team was discussing this and we soon realized we could use what was thought to be a disadvantage for electrolyte as an advantage for dissolving and recycling spent lithium batteries,” Ganguli said.
Page 1 of 2
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Curtiss-Wright Selected by Rheinmetall to Provide Turret Drive Stabilization System for the KF51 Panther Main Battle Tank
08/11/2025 | BUSINESS WIRECurtiss-Wright announced it has been selected by Rheinmetall Landsysteme Germany (RLS) to provide its modular turret drive stabilization system (TDSS) technology in support of the KF51 Panther Main Battle Tank (MBT).
European Global Mobile Artillery Rocket System Launcher Proves Capability with First-Ever Firing
08/04/2025 | Lockheed MartinLockheed Martin and Rheinmetall, partners in the Global Mobile Artillery Rocket System (GMARS) program, successfully conducted the first live fire of the GMARS launcher, demonstrating its capability to launch GMLRS rockets.
Rheinmetall Expands Local Production Activities in Romania
07/28/2025 | RheinmetallRheinmetall has established a comprehensive local production network in Romania, encompassing both its own companies in the country and new partnerships with Romanian companies.
STMicroelectronics, Metalenz Sign a New License Agreement to Accelerate Metasurface Optics Adoption
07/14/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications and Metalenz, the pioneer of metasurface optics, announced a new license agreement.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.