Which IPC-A-610 Class is Best for Your PCBA?
April 8, 2019 | Neil Sharp, JJS ManufacturingEstimated reading time: 3 minutes

When you think about what makes a good electronics assembly, what are the most common expectations that come to mind? If the assembly works as intended, then surely that indicates a certain level of acceptability, right? But what about the product's longer-term reliability? And what if you'd also like it to look good too?
Printed circuit board assembly (PCBA) is a surprisingly complex thing. There’s the PCB itself with all of its materials, finishes, and various components, and the solder that holds everything together. Within that, there’s also a fair amount of scope for things to be good, bad, or somewhere in between.
For many electronics manufacturing services (EMS) providers, IPC-A-610: Acceptability of Electronic Assemblies is the agreed standard that we use to define what's acceptable and what's not in the world of PCBA production. The standard is comprised of three Classes: 1, 2, and 3. As an original equipment manufacturer (OEM), it’s important that you're clear on the basic principles that separate those classes so that you have a clear and realistic expectation of what the results are going to be.
Class 1
The lowest IPC-A-610 class, Class 1, is the most lenient when it comes to making allowances for potential defects. When we think of the functionality of the electronics assembly within a simple toy, for example, the PCBA is likely to be hidden well away inside the body of the item, so the quality of the solder joints or component positions may not be such a high priority. The product is also likely to be manufactured to very tight margins (read "as cheaply as possible"). So, as long as the item still functions as expected and its operational life sits within an acceptable timeframe, then that will probably be sufficient.
Class 2
Class 2 is typically the most requested for non-critical electronic assemblies where longer-term reliability is desirable, but perhaps not essential. Class 2 still allows for a certain degree of imperfection. Surface-mount components that have been placed slightly off pad, for instance, are usually still fine electrically and mechanically even though they may look wrong aesthetically.
Class 3
The highest standard of IPC-A-610 is Class 3, which means an electronic assembly must be built per all of the IPC criteria. This includes laminate selection, plating thickness, material qualifications, manufacturing processes, and inspection. Typically, Class 3 is aimed at more critical PCB assemblies.
However, achieving that standard may also come at a premium. It might be necessary to slow down the surface-mount machines to ensure the desired placement accuracy, which will mean a longer build time and additional cost. It may also be necessary to make allowance for higher degrees of scrap in cases where materials can’t be reworked or to allow time for extra inspection or additional cleaning.
Working With Your EMS partner
Many would argue that a reliable EMS provider will always aim to manufacture the products they build to the Class 3 standard, regardless. Any EMS provider that is genuinely serious about compliance is also undoubtedly going to have well-established internal training programs to promote awareness within their manufacturing facility. Also, this compliance is likely to extend not just to the inspection of the end products but also to monitoring every process of the build. The best way to achieve this and maintain the standards required will be for them to appoint in-house IPC trainers who will be externally re-certified.
In the majority of cases, the IPC-A-610 standard will suffice, but there may be situations where an OEM prefers to produce their own criteria to either enhance or replace the existing standard. If you do choose to create your own set of guidelines, then it will be important to ensure that your EMS partner is crystal clear about your expectations from the outset. Thus, you should reference your specific criteria on every request for quotation (RFQ) or purchase order that you submit.
Neil Sharp is the director of marketing for JJS Manufacturing.
Suggested Items
ViTrox Marks 25 Years of Innovation with Cutting-Edge Solutions at NEPCON China 2025 in Shanghai
04/18/2025 | ViTrox TechnologiesViTrox, which aims to be the World’s Most Trusted Technology Company, is proud to announce its participation in NEPCON China 2025, taking place from April 22–24, 2025, at Booth #1E45, Shanghai World Expo Exhibition & Convention Centre (SWEECC).
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
KOKI Announces Upcoming Webinar on Solder Voiding – Causes and Remedies
04/16/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce its upcoming webinar, “Solder Voiding—Causes and Remedies,” which will take place on Tuesday, April 22, 2025, at 12:00 PM CDT. Jerome McIntyre, Regional Sales & Applications Engineer at KOKI Americas, will present this live session.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.
Indium to Feature Materials Solutions Powering Sustainability at PCIM Europe
04/15/2025 | Indium CorporationIndium Corporation specializes in power device packaging, offering a portfolio of advanced material solutions encompassing the entire assembly, including die-attach, top-side die interconnect, substrate-attach, package-attach, and PCB assembly.