Improving Method to Recycle and Renew Used Cathodes from Lithium-Ion Batteries
April 18, 2019 | University of California San DiegoEstimated reading time: 2 minutes
Researchers at the University of California San Diego have improved their recycling process that regenerates degraded cathodes from spent lithium-ion batteries. The new process is safer and uses less energy than their previous method in restoring cathodes to their original capacity and cycle performance.
Zheng Chen, a professor of nanoengineering who is affiliated with the Sustainable Power and Energy Center at UC San Diego, led the project. The work was published in Advanced Energy Materials.
“Due to the rapid growth of electric vehicle markets, the worldwide manufacturing capacity of lithium-ion batteries is expected to reach hundreds of gigawatt hours per year in the next five years,” Chen said. “This work presents a solution to reclaim the values of end-of-life lithium-ion batteries after 5 to 10 years of operation.”
Chen’s team previously developed a direct recycling approach to recycle and regenerate degraded cathodes. It replenishes lithium ions that cathodes lose over extended use and restores their atomic structures back to their original states. However, that process involves pressurizing a hot lithium salt solution of cathode particles to around 10 atmospheres. The problem is this pressurizing step raises costs and requires extra safety precautions and special equipment, said Chen.
So the team developed a milder process to do the same job at ambient pressure (1 atmosphere). The key was using eutectic lithium salts—a mixture of two or more salts that melts at temperatures much lower than either of its components. This combination of solid lithium salts produces a solvent-free liquid that researchers can use to dissolve degraded cathode materials and restore lithium ions without adding any extra pressure in the reactors.
Illustration of the process to restore lithium ions to degraded NMC cathodes using eutectic molten salts at ambient pressure. Image courtesy of Advanced Energy Materials/Chen lab
The new recycling method involves collecting cathode particles from spent lithium ion batteries and then mixing them with a eutectic lithium salt solution. The mixture is then heat treated in two steps: it is first heated to 300 C, then it goes through a short annealing process in which it is heated to 850 C for several hours and then cooled naturally.
Researchers used the method to regenerate NMC (LiNi0.5Mn0.3Co0.2), a popular cathode containing nickel, manganese and cobalt, which is used in many of today’s electric vehicles.
“We made new cathodes from the regenerated particles and then tested them in batteries built in the lab. The regenerated cathodes showed the same capacity and cycle performance as the originals,” said Yang Shi, the first author who performed this work as a postdoctoral researcher in Chen’s lab at UC San Diego.
“In an end-of-life lithium-ion battery, the cathode material loses some of its lithium. The cathode’s crystal structure also changes such that it’s less capable of moving ions in and out. The recycling process that we developed restores both the cathode’s lithium concentration and crystal structure back to their original states,” Shi said.
The team is tuning this process so that it can be used to recycle any type of cathode materials used in lithium-ion and sodium-ion batteries.
“The goal is to make this a universal recycling process for all cathode materials,” Chen said. The team is also working on a process to recycle degraded anodes, such as graphite as well as other materials.
Chen is also collaborating with UC San Diego nanoengineering professor Shirley Meng, who is the director of the Sustainable Power and Energy Center, to identify subtle changes in the cathode microstructure and local composition using high-resolution microscopic imaging tools.
Suggested Items
Statistically Testing Inner Layer Yield Improvement Projects
12/18/2024 | Dr. Patrick Valentine, UyemuraCan we trust our measurement system to give us reliable data? Is it accurate, repeatable, and reproducible? Measurement is the foundation of quality. We measure for two primary reasons: to make decisions on product quality and to provide data that will inform continuous improvement projects. We can engage in continuous improvement projects if we are confident in our measurement systems.
SCHMID Group Unveils Enhanced InfinityLine H+ for Electroless Copper Deposition
12/16/2024 | SCHMID GroupThe SCHMID Group, a global leader in high-tech solutions for the electronics industry, proudly announces significant updates to its flagship InfinityLine H+ Electroless Cu system. Specifically designed for the production of high- performance advanced packaging applications using mSAP and SAP processes, the system reflects SCHMID’s expertise in horizontal electroless copper deposition.
ASMPT: Backchannel Production Planning in Electronics Manufacturing with WORKS
12/16/2024 | ASMPTThe WORKS Software Suite from ASMPT raises production planning in electronics manufacturing to a new level. With its seamless integration of ERP systems and continuous data feedback loop, the software optimizes the planning process in real time – from receiving an order to starting its production run.
Successful Pre-acceptance of TSK Schill GmbH Production Line for Moulded Etched Parts
12/16/2024 | TSK Schill GmbHThe specialist for horizontal wet systems for the production of printed circuit boards, chemical milling and moulded etched parts, TSK Schill GmbH from Gäufelden-Nebringen, is installing new production systems at one of the leading manufacturers of precision metal parts.
Inner Layer Precision & Yields Explored in December 2024 Issue of PCB007 Magazine
12/16/2024 | I-Connect007 Editorial TeamBuilding accuracy into your inner layers as well as being able to assess their pass/fail status as early as possible is critical. In this month’s PCB007 Magazine, we take a close look at building precision into your inner layers.