Electric Skyrmions Charge Ahead for Next-Generation Data Storage
April 19, 2019 | Berkeley LabEstimated reading time: 6 minutes
To confirm their observations, senior staff scientist Elke Arenholz and staff scientist Padraic Shafer at Berkeley Lab’s Advanced Light Source (ALS), along with Margaret McCarter, a physics Ph.D. student from the Ramesh Lab at UC Berkeley, probed the chirality by using a spectroscopic technique known as RSXD-CD (resonant soft X-ray diffraction circular dichroism), one of the highly optimized tools available to the scientific community at the ALS, a U.S. DOE Office of Science User Facility that specializes in lower energy, “soft” X-ray light for studying the properties of materials.
Simulations of skyrmion bubbles and elongated skyrmions for the lead titanate/strontium titanate superlattice. (Credit: Berkeley Lab)
Light waves can be “circularly polarized” to also have handedness, so the researchers theorized that if polar skyrmions have handedness, a left-handed skyrmion, for example, should interact more strongly with left-handed, circularly polarized light – an effect known as circular dichroism.
When McCarter and Shafer tested the samples at the ALS, they successfully uncovered another piece to the chiral skyrmion puzzle – they found that incoming circularly polarized X-rays, like a screw whose threads rotate either clockwise or counterclockwise, interact with skyrmions whose dipoles rotate in the same direction, even at room temperature. In other words, they found evidence of circular dichroism – where there is only a strong interaction between X-rays and polar skyrmions with the same handedness.
“The theoretical simulations and microscopy both revealed the presence of a Bloch component, but to confirm the chiral nature of these skyrmions, the last piece of the puzzle was really the circular dichroism measurements,” McCarter said. “It is amazing to observe this effect in materials that typically don’t have handedness. We are excited to explore the implications of this chirality in a ferroelectric and how it can be controlled in a way that could be useful for storing data.”
Now that the researchers have made a single electric skyrmion and confirmed its chirality, they plan to make an array of dozens of electric skyrmions – each one with a diameter of just 8 nm (for comparison, the Ebola virus is about 50 nm wide) – with the same handedness. “In terms of applications, this is exciting because now we have chirality – switching a skyrmion on or off, or between left-handed and right-handed – on top of still being able to use the charge for storing data,” Ramesh said.
The researchers next plan to study the effects of applying an electric field on the polar skyrmions. “Now that we know that polar/electric skyrmions are chiral, we want to see if we can electrically manipulate them. If I apply an electric field, can I turn each one like a turnstile? Can I move each one, one at a time, like a checker on a checkerboard? If we can somehow move them, write them, and erase them for data storage, then that would be an amazing new technology,” Ramesh said.
Also contributing to the study were researchers from Pennsylvania State University, Cornell University, and Oak Ridge National Laboratory.
The work was supported by the DOE Office of Science with additional funding provided by the Gordon and Betty Moore Foundation’s EPiQS Initiative, the National Science Foundation, the Luxembourg National Research Fund, and the Spanish Ministry of Economy and Competitiveness.
VIDEO: Simulation of a single polar skyrmion. Red arrows signify that this is a left-handed skyrmion. The other arrows represent the angular distribution of the dipoles. (Credit: Xiaoxing Cheng, Pennsylvania State University; C.T. Nelson, Oak Ridge National Laboratory; and Ramamoorthy Ramesh, Berkeley Lab)
Page 2 of 2Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
Summit Interconnect Announces Appointment of Leo LaCroix as Chief Operating Officer
09/09/2025 | Summit Interconnect, Inc.Summit Interconnect, a leading North American manufacturer of Printed Circuit Boards (PCBs), today announced that Leo LaCroix has assumed the role of Chief Operating Officer (COO).
Leadership Change at Koh Young Europe
08/14/2025 | Koh YoungAfter 16 years of leading Koh Young Europe as General Manager, we would like to announce that Harald Eppinger will step down from his executive role.
TTM Technologies, Inc. Announces Retirement Plans of its CEO and Proceeds with CEO Successor Search
08/04/2025 | TTM Technologies, Inc.TTM Technologies, Inc., a leading global manufacturer of technology solutions including mission systems, radio frequency (“RF”) components and RF microwave/microelectronic assemblies, quick-turn and technologically advanced printed circuit boards (“PCB”), today announced that Thomas T. Edman, the company’s President and Chief Executive Officer, intends to retire following the appointment of the company’s next President and CEO.
Advancing Electrolytic Copper Plating for AI-driven Package Substrates
08/05/2025 | Dirk Ruess and Mustafa Oezkoek, MKS’ AtotechThe rise of artificial intelligence (AI) applications has become a pivotal force driving growth in the server industry. Its challenging requirements for high-frequency and high-density computing are leading to an increasing demand for development of advanced manufacturing methods of package substrates with finer features, higher hole densities, and denser interconnects. These requirements are essential for modern multilayer board (MLB) designs, which play a critical role in AI hardware. However, these intricate designs introduce considerable manufacturing complexities.