Researchers Report High Performance Solid-State Sodium-Ion Battery
April 22, 2019 | University of HoustonEstimated reading time: 2 minutes
Solid-state sodium-ion batteries are far safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages.
Researchers reported developing an organic cathode that dramatically improves both stability and energy density on April 19.
The improved performance, reported in the journal Joule, is related to two key findings:
- The resistive interface between the electrolyte and cathode that commonly forms during cycling can be reversed, extending cycle life, and
- The flexibility of the organic cathode allowed it to maintain intimate contact at the interface with the solid electrolyte, even as the cathode expanded and contracted during cycling.
Yan Yao, associate professor of electrical and computer engineering at the University of Houston and corresponding author of the paper, said the organic cathode—known as PTO, for pyrene-4,5,9,10-tetraone—offers unique advantages over previous inorganic cathodes. But he said the underlying principles are equally significant.
“We found for the first time that the resistive interface that forms between the cathode and the electrolyte can be reversed,” Yao said. “That can contribute to stability and longer cycle life.” Yao also is a principal investigator at the Texas Center for Superconductivity at UH. His research group focuses on green and sustainable organic materials for energy generation and storage.
Yanliang “Leonard” Liang, a research assistant professor in the UH Department of Electrical and Computer Engineering, said that reversibility of the interface is the key, allowing the solid-state battery to reach a higher energy density without sacrificing cycle life. Normally, a solid-state battery’s ability to store energy is halted when the resistive cathode-electrolyte interface forms; reversing that resistance allows energy density to remain high during cycling, he said.
Lithium-ion batteries with their liquid electrolytes are able to store relatively high amounts of energy and are commonly used to power the tools of modern life, from cell phones to hearing aids. But the risk of fire and explosion has heightened interest in other types of batteries, and a solid-state sodium-ion battery offers the promise of increased safety at a lower cost.
Xiaowei Chi, a post-doctoral researcher in Yao’s group, said a key challenge had been to find a solid electrolyte that is as conductive as the liquid electrolytes used in lithium-ion batteries. Now that sufficiently conductive solid electrolytes are available, a remaining challenge has been the solid interfaces.
One issue raised by a solid electrolyte: the electrolyte struggles to maintain intimate contact with a traditional rigid cathode as the latter expands and contracts during battery cycling. Fang Hao, a PhD student working in Yao’s group, said the organic cathode is more pliable and thus able to remain in contact with the interface, improving cycling life. The researchers said the contact remained steady through at least 200 cycles.
“If you have reliable contact between the electrode and electrolyte, you will have a great chance of creating a high-performance solid-state battery,” Hao said.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Ferric Launches New Integrated Voltage Regulator for AI and High-Performance Processors
08/27/2025 | BUSINESS WIREFe1766 delivers an unprecedented 160 A in the industry’s smallest IVR footprint, redefining chip-level and system-level power delivery for the AI era.
Tigo Energy Initiates ‘Made in the USA’ Manufacturing Partnership With EG4 Electronics Share
08/27/2025 | BUSINESS WIRETigo Energy, Inc announced a manufacturing and marketing partnership with EG4 Electronics to produce Tigo optimized inverters and Module Level Power Electronics (MLPE) together with EG4 solar inverters in the United States of America.
SINBON Celebrates Opening of New US Manufacturing Facility
08/21/2025 | PRNewswireLeading electronics system integrator SINBON Electronics Co., Ltd. held an opening ceremony on August 18 to celebrate its new 59,000-square-foot facility in Clayton, Ohio.