Chemists Develop Safer Electrochromic Inks
April 25, 2019 | Georgia TechEstimated reading time: 10 minutes
“Where people print is not always in chemically safe environments,” said John Reynolds, a professor in Georgia Tech’s Schools of Chemistry and Biochemistry and Material Science and Engineering. So Reynolds and the study’s first author Brian Schmatz, who came up with the water-based method, set out to make electrochromic film inks safer for everyday environments.
There were some hurdles to pulling it off. The finished product had to electrically operate comparable to films that are applied in an organic solvent, and also be water-resistant in spite of the water-based production. Schmatz’s method also needed to be logistically and financially realistic for producers to implement.
The researchers published details on their solution and how it has met the criteria in the journal ACS Central Science on August 16, 2017. Should the chemical process progress to production, the future may see more windows, prescription glasses, or even textiles that switch between colors and shades of darkness with the click of a button or with the help of a light-detecting switch.
That’s how many self-dimming rear-view mirrors work: The high-beams of the motorist behind you hit a light sensor that applies a mild electric field to the mirror, and that activates the color-changing, or electrochromic, film, which switches to a darker tint.
Electrochemical Rainbow
The Reynolds lab’s electrochromic films are made with conjugated polymers, colorful and electroactive organic molecules. They easily let go of a few of their more loosely attached electrons, and when they do, their colors shift.
If the colored films are on a clear surface, when the color vanishes, the surface becomes clear. The surface has to be conductive so that a small voltage (about 1 volt) can be applied to bump the electrons off the conjugated polymer or help them jump back on.
The tints don’t have to be gray, blue, brown, or otherwise straight-laced. “We can make any color,” Reynolds said.
‘Toxic,’ ‘Carcinogenic’
Because of previous inks’ organic solvents, applying electrochromic films in the past has come with significant safety requirements. Their costs could become prohibitive if the job is big, say, if a company wanted to cover the windows of an office building with an electrochromic film.
“Most research labs use chlorobenzene as a solvent. It’s pretty toxic. It’s carcinogenic, slightly volatile as well,” Schmatz said. “So, it’s not something people want to work with at scale.”
Also, people may simply find the smell of an organic chemical in their workplace unpleasant. Examples of organic solvent smells most everyone has experienced are kerosene, gasoline, or rubbing alcohol.
Organic then Aqueous
Water as a solvent is much safer, but it can present other challenges. Conjugated polymers are produced in organic solvents and do not inherently dissolve in water. Also, films printed from water-based inks might wash out in the rain or smudge in high humidity.
Schmatz’s invention combines the best of both worlds by using an organic solvent and an aqueous solvent in phases.
First, the conjugated polymer is produced in an organic solvent to assure quality material is made. That’s also aligned with chemical industry practices.
“Chemical companies really do a lot of this kind of processing, and it’s advantageous to keep this as it is, so the companies can keep doing what they’re doing and add this product more easily,” Schmatz said.
But then Schmatz alters the conjugated polymer – the ink’s active ingredient, so to speak -- which is usually not water soluble, so that it will indeed dissolve in water.
“We embed a chemical trigger within the polymer. It’s activated through a high pH water wash, and that transforms the organic soluble polymer into a water soluble polyelectrolyte,” he said. “The reason we want to do all of this is so we can produce the polymer in an organic solvent, but then print the polymer from a water-based ink.”
Ultraviolet Cleaver
To make sure that the film doesn’t smear or run after printing and that it functions well when it’s completed, Schmatz cleaves off that added chemical trigger from the conjugated polymer by shining ultraviolet light on the electrochromic film.
The water-soluble chemical chain then becomes a simple residue that can be wiped or rinsed off. What’s left is a robust, pure conjugated polymer film, which can no longer dissolve in water or organic solvents.
Reynolds envisions electrochromic films on various materials, including some other than glass or plastic. “You could apply this to camouflage, for example, with the right textiles, and have a sensor connected to a battery, and have it switch the colors to match the changing lightness or darkness of a soldier’s surroundings.”
Aside from electrochromics, these conjugated polymers are also being explored for printed transistors, solar cells, chemical and bio-sensors, light emitting displays and bioelectronics. Reynold’s group has access to a number of delivery methods to test application of conjugated polymers.
“Georgia Tech is a focused engineering university and has application capabilities you can find right here,” Reynolds said. “The various methods of printing or spraying are here – airbrush, blade coater, ink jet. And if we don’t have something, we can build it here.”
Page 3 of 3Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
SkyWater Completes Acquisition of Fab 25, Expanding U.S. Pure-Play Foundry Capacity for Critical Semiconductor Technologies
09/12/2025 | SkyWaterSkyWater Technology, the trusted technology realization partner, announced that it has completed its acquisition of Infineon Technologies AG’s 200 mm semiconductor fab in Austin, Texas (“Fab 25”)
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Automation Meets Sustainability
09/08/2025 | Rick Nichols, GreenSource EngineeringGreenSource Engineering (GSE) is proud to have contributed to the first successful reshoring of a PCB facility on a greenfield site in the United States. While we are honored to have played a key role, full credit for this achievement goes to SEL for its vision, commitment, and professionalism.
Blue Water Autonomy Announces $50 Million Series A Led by GV to Strengthen U.S. Maritime Power with Autonomous, Unmanned Ships
08/26/2025 | PRNewswireBlue Water Autonomy, a Boston-based technology and shipbuilding company designing and building highly producible unmanned ships for the U.S. Navy, announced $50 million in Series A funding led by GV.
SEL: Revolutionizing PCB Production Through MES, Partnerships, and Vision
08/21/2025 | Barry Matties, I-Connect007Two years ago, we visited Schweitzer Engineering Laboratories (SEL) to better understand its new captive greenfield PCB facility. We recently returned, this time to discuss how this bold vision has transformed the industry. Barry Matties met with John Hendrickson, engineering director, and Jessi Hall, vice president of vertical integration, to discuss the transformative capabilities of Factory Core, SEL’s custom manufacturing execution system (MES), which allows for real-time monitoring of workflow and machine performance, and has led to impressive improvements in quality and cost efficiency.