In-Mold Electronics: IDTechEx Research Analyzes the Transition From Art to Platform Technology
April 25, 2019 | PRNewswireEstimated reading time: 6 minutes
In-Mold Electronics (IME) is a technology for structurally integrating electronic functionality into 3D-shaped parts. The value proposition is compelling: the technology enables novel and elegant designs, reduces weight and saves space, and decreases part and assembly numbers.
The technology is no longer young. Its successful realization, however, still resembles a black art. IDTechEx Research believes that, in time, the technology can become an accessible platform technology. Once this occurs, numerous products can be designed and manufactured using IME in diverse sectors, including automotive, white goods, consumer electronics and others. Basically, IME can become the method of choice when it makes sense to integrate relatively simple electronics with structural parts. To consider this scenario, consider the PCB industry, which is an accessible technology that underpins the electronic industry.
Below, IDTechEx Research describes the current and future (potential) state of affairs and highlights how a transition can take place to evolve the technology from a black art method to an accessible manufacturing platform. Also analyzed are the roles that different players in the value chain are fulfilling that could aid with enabling this transition.
The information provided draws from the recent IDTechEx Research report, "In-Mold Electronics 2019-2029: Technology, Market Forecasts, Players." This report finds that the market will exceed $250 million by 2024. It provides a detailed assessment of the materials, processes, products and prototypes, applications and markets for IME and multiple rival technologies, such as molded interconnect devices (MID) or aerosol deposition. Furthermore, this report provides application-segmented, ten-year market forecasts and overviews of the key companies across this emerging value chain.
The current state of affairs
First, consider the current state of affairs. The know-how is being accumulated in a few hubs, but it has not yet been delocalized and spread into a global value chain. The design process is complicated. The user does not know the possibilities and limitations and has few well-established guidelines and tools to deploy. The components or parts in IME are not module- or library-like. The developers must spend great effort each time to select the appropriate parts and materials and match component performance with design possibilities. The producer needs to overcome a steep learning curve each time it wants to develop a product. The producer must also develop a highly optimized process that tolerates near-zero defects, as post-production repair is not readily possible.
These challenges significantly increase the product development time, effort and, thus, cost. This limits near-term prospects to (a.) high-volume applications justifying the risk and timeline of development; (b.) really simple and low-complexity products; and (c.) companies that view IME as a strategic production competency and invest in learning it, even without having specific products in mind.
The future state of affairs
The future state will, however, plausibly be very different. The design and production know-how will be highly spread across the value chain. The designers will be able to deploy software and other design tools to rapidly design products. These tools will provide access to libraries of functionalities and design guidelines. The accumulated industry know-how will make prototyping easy and fast, and the community will become more experienced in executing rapid lab-to-fab transitions. The menu of available IME-compatible parts will expand. Here, "parts" include substrates, functional and graphical pasts, attachment adhesives, ICs, LEDs and so on. The rigid parts today are all developed for other industries and force-fitted into IME designs. In the very long-term future, if volumes are large enough, special versions might be developed. This could build on the work taking place to enable flexible ultrathin IC for flexible hybrid electronics.
Can this transition take place?
This transition will open up the market. It will turn the technology into a platform that will enable its own demand creation. It would be like the deployment of PCBs in making electronics or the use of digital printing in publication. This prospect is very appealing, but is it realistic and feasible?
IDTechEx Research thinks there is no fundamental barrier. In fact, it represents a natural progression of the state of the technology. The industry has had a decade or so of experience. Multiple materials are available, and many suppliers are active. There is good know-how in terms of stack design and production process management. The industry also knows what trade-offs not to make in scaling up pilot lines to mass production.
A new wave of commercial products is arriving. Despite this, the industry requires one or more major success stories. Some users remain unconvinced, even in sectors such as automotive. Questions over the cost of production persist, especially in segments where pennies matter, like in the white goods sector. These are not fundamental barriers or showstoppers though. Similar challenges and uncertainties are to be found in commercializing nearly every new technology, especially those involving a significant change in the production process.
So what are the different players doing to make this transition possible? Material suppliers need to expand and optimize their portfolio of IME materials. The portfolio approach is a strategic imperative. It offers users a full solution, shortening their development time. And it offers suppliers some degree of lock-in protection and switching barriers. The substrate suppliers must ensure that they remain in the qualification process. PC is the common material of choice today, but it does not forever have to be. Indeed, alternatives are emerging that seek to offer sufficient formability while beating PC on cost, solvent resistance and other features. Molding material suppliers too need to invest in R&D to develop tailored materials that relax the process conditions. The benefits will propagate back into the value chain: the conditions that pastes have to withstand will be relaxed; the processing conditions become easier and, thus, the yield will likely improve; etc. Companies capable of screen-printing functional inks, e.g. force sensor makers or membrane switch producers, are also now considering evolving their businesses and adding forming capabilities. Some have taken the first initial steps, whereas others are waiting on the fence for the technology to become more mature and de-risked. Large contract manufacturers have also been experimenting with the technology to build in-house know-how. The molding experience is also expanding. This too is non-trivial, as often relatively voluminous parts are required (e.g. an IME part can be a small subset of a major molded piece). Software firms are engaging with technology hubs (centers of know-how) to develop tools to streamline the design process. End users are also engaged in concept and product design.
Is IME the only solution?
As a final comment in this article, IME is not the only method of creating 3D electronics. There are multiple other existing and emerging solutions. There is IMD (laser direct structure), which has been widely adopted in the past for antenna metallization, and its key patents are now expiring; there is aerosol, which has also had some success with 3D antenna metallization; there are 3D printed electronics, which are in the early stage and mostly constrained to prototyping; and so on. IMD, however, is very different. It can create voluminous parts with structural electronics extending well beyond what other solutions essentially offer: a 3D shaped PCB. IME can also become a very high-volume mass production technique. As such, it is a process that is well differentiated from the other close alternatives.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.