Putting the Sense in Materials
April 30, 2019 | KAUSTEstimated reading time: 5 minutes

The ability to track minuscule but important changes across a range of systems—from the body to the borough and beyond—seems limitless with the emerging array of novel devices that are tiny, self-powering and wirelessly connected. KAUST’s Sensor Initiative comprises a broad range of experts, from marine scientists to electrical engineers, who are innovating solutions to some of the most challenging obstacles in sensor technology. Together, they are powering up to transform the exciting intersection between small interconnected devices and the world around us.
Capacity to monitor our surroundings also reveals new potential in environmental and community protection. For example, a sensor that can detect a flood or a fire can save lives; a sensor that can track animals could help to better manage an ecosystem; and a sensor that can read plant condition could promote sustainable farming.
To take advantage of the market opportunities for sensors in both medical and environmental fields, KAUST holds an annual meeting of biologists, engineers and chemists to discuss technology development. Since 2015, these meetings have produced ambitious collaborations that aim to improve the science that underpins next-gen sensors as well as to take them to the market.
Get Ready to Plug and Play
Khaled Salama, professor of electrical engineering and director of the Sensor Initiative, explains that what sets KAUST apart are the University’s human resources and outstanding lab facilities that underpin its innovative sensor technologies. With the onslaught of data coming from the hundreds of billions of sensors in our cities, cars, homes and offices, we need machine learning to help us understand the data, the supercomputing power to manage it and the expertise to make sure the machines do it all effectively.
“KAUST has strength in materials research, which is where our expertise can be used for developing sensors with transducer components that can be quickly swapped out and replaced with ones customized for different biological or environmental applications,” says Salama.
“Some can stick to your skin and monitor your vital signs through changes in your sweat while others can be placed in petroleum installations to monitor hazardous gases,” says Salama. “We’re not bound to one specific application, and each new development gives us a chance to answer some fundamental scientific questions along the way.”
Say Goodbye to Batteries, As You Know Them
KAUST is deploying tiny sensors across the University’s campus to model future smart cities that can continuously monitor air quality or help self-driving cars navigate. Implementing this vision means making devices that are as self-sufficient as possible.
“If you have sensors containing regular batteries, they might last a thousand cycles,” says Husam Alshareef, professor of materials science. “We have to get them to last millions of times longer.”
Alshareef and several international collaborators are building a technology known as microsupercapacitors—next-generation batteries—to resolve challenges around energy storage. Through a special vacuum deposition process, the team has transformed ruthenium oxide into a thin-film electrode that can hold massive amounts of charge and quickly release it on demand.
Get Plant Smart with Winged Sensors
Professor Muhammad Hussain is a strong believer in the importance of availability in the sensor market. He insists that his sensors not only provide solutions to everyday problems but also that they be affordable to all. That said, he does not forgo creativity for affordability. Hussain’s plant sensors are flexible, inexpensive and range in size from 1-20 mm in diameter. When placed on a plant leaf, they can detect temperature, humidity and growth, data that can be used to help farmers farm smart—minimizing nutrient and water waste. But what makes them especially remarkable is their beautiful butterfly shape. When asked why he chose the butterfly shape Hussain told us, “Butterflies are aesthetically beautiful and natural in a plant environment. Their large wings allow us to integrate many different sensors, which is especially useful for the artificial intelligence chip we are currently integrating into the system. Ultimately, we aim to create a fully interactive system such that the butterfly can deliver nutrients or gather more data.”
Page 1 of 2
Suggested Items
Asia/Pacific AI Spending to Reach $175 Billion by 2028, Driven by GenAI Boom
04/25/2025 | IDCAccording to the IDC Worldwide AI and Generative AI Spending Guide, the Asia/Pacific region, including China and Japan, is experiencing unprecedented growth in Artificial intelligence (AI) and generative AI (GenAI) investments, spanning software, services, and hardware designed for AI-driven systems.
Alphawave Semi Delivers Foundational AI Platform IP for Scale-Up and Scale-Out Networks
04/23/2025 | BUSINESS WIREAlphawave Semi, a global leader in high-speed connectivity and compute silicon for the world’s technology infrastructure, bolsters its leadership in foundational AI silicon connectivity subsystems through silicon proven chiplets and IP subsystems on advanced process nodes and package types. This is set to be showcased at the TSMC 2025 North America Technology Symposium.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.
UHDI Fundamentals: UHDI Drives Unique IoT Innovation in Farming
04/22/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications. The typical discussions around UHDI focus on our standard electronics industry market segments like milaero, medical, consumer electronics, etc. IoT is all about machines talking to other machines, machine learning, and artificial intelligence, but again, typically applied in our PCB and assembly operations.