Record Solar Hydrogen Production With Concentrated Sunlight
May 1, 2019 | EPFLEstimated reading time: 2 minutes

EPFL researchers have created a smart device capable of producing large amounts of clean hydrogen. By concentrating sunlight, their device uses a smaller amount of the rare, costly materials that are required to produce hydrogen, yet it still maintains a high solar-to-fuel efficiency. Their research has been taken to the next scale with a pilot facility installed on the EPFL campus.
Hydrogen will play a key role in reducing our dependence on fossil fuels. It can be sustainably produced by using solar energy to split water molecules. The resulting clean energy can be stored, used to fuel cars or converted into electricity on demand. But making it reliably on a large scale and at an affordable cost is a challenge for researchers. Efficient solar hydrogen production requires rare and expensive materials – for both the solar cells and the catalyst – in order to collect energy and then convert it.
Scientists at EPFL’s Laboratory of Renewable Energy Science and Engineering (LRESE) came up with the idea of concentrating solar irradiation to produce a larger amount of hydrogen over a given area at a lower cost. They developed an enhanced photo-electrochemical system that, when used in conjunction with concentrated solar irradiation and smart thermal management, can turn solar power into hydrogen with a 17% conversion rate and unprecedented power and current density. What’s more, their technology is stable and can handle the stochastic dynamics of daily solar irradiation.
The results of their research have just been published in Nature Energy. “In our device, a thin layer of water runs over a solar cell to cool it. The system temperature remains relatively low, allowing the solar cell to deliver better performance,” says Saurabh Tembhurne, a co-author of the study. “At the same time, the heat extracted by the water is transferred to catalysts, thereby improving the chemical reaction and increasing the hydrogen production rate,” adds Fredy Nandjou, a researcher at the LRESE. Hydrogen production is therefore optimized at each step of the conversion process.
The scientists used the LRESE’s unique solar simulator to demonstrate the stable performance of their device. The results from the lab-scale demonstrations were so promising that the device has been upscaled and is now being tested outdoors, on EPFL’s Lausanne campus. The research team installed a 7-meter diameter parabolic mirror that concentrates solar irradiation by a factor of 1,000 and drives the device. The first tests are under way.
Hydrogen Stations
The scientists estimate that their system can run for over 30,000 hours – or nearly four years – without any part replacements, and up to 20 years if some parts are replaced every four years. Their solar concentrator turns and follows the sun across the sky in order to maximize its yield. Sophia Haussener, the head of the LRESE and the project lead, explains: “In sunny weather, our system can generate up to 1 kilogram of hydrogen per day, which is enough fuel for a hydrogen-powered car to travel 100 to 150 kilometers.”
For distributed, large-scale hydrogen generation, several concentrator systems could be used together to produce hydrogen at chemical plants or for hydrogen stations. Tembhurne and Haussener are planning to take their technology from the lab to industry with a spin-off company called SoHHytec.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
AV Switchblade 600 Loitering Munition System Achieves Pivotal Milestone with First-Ever Air Launch from MQ-9A
09/12/2025 | BUSINESS WIREAeroVironment, Inc. (AV) a global leader in intelligent, multi-domain autonomous systems, announced its Switchblade 600 loitering munition system (LMS) has achieved a significant milestone with its first-ever air launch from an MQ-9A Reaper Unmanned Aircraft System (UAS).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.