Energy-Free, Superfast Computing Invented by Scientists Using Light Pulses
May 16, 2019 | Lancaster UniversityEstimated reading time: 2 minutes

Superfast data processing using light pulses instead of electricity has been created by scientists.
The invention uses magnets to record computer data which consume virtually zero energy, solving the dilemma of how to create faster data processing speeds without the accompanying high energy costs.
Image Caption: Using ultrashort pulses of light enables extremely economical switching of a magnet from one stable orientation (red arrow) to another (white arrow). This concept enables ultrafast information storage with unprecedented energy efficiency
Today’s data centre servers consume between 2 to 5% of global electricity consumption, producing heat which in turn requires more power to cool the servers.
The problem is so acute that Microsoft has even submerged hundreds of its data centre services in the ocean in an effort to keep them cool and cut costs.
Most data are encoded as binary information (0 or 1 respectively) through the orientation of tiny magnets, called spins, in magnetic hard-drives. The magnetic read/write head is used to set or retrieve information using electrical currents which dissipate huge amounts of energy.
Now an international team publishing in Nature has solved the problem by replacing electricity with extremely short pulses of light - the duration of one trillionth of a second - concentrated by special antennas on top of a magnet.
This new method is superfast but so energy efficient that the temperature of the magnet does not increase at all.
The team includes Dr Rostislav Mikhaylovskiy, formerly at Radboud University and now Lancaster University, Stefan Schlauderer, Dr Christoph Lange and Professor Rupert Huber from Regensburg University, Professor Alexey Kimel from Radboud University and Professor Anatoly Zvezdin from the Russian Academy of Sciences.
They demonstrated this new method by pulsing a magnet with ultrashort light bursts (the duration of a millionth of a millionth of a second) at frequencies in the far infrared, the so called terahertz spectral range.
However, even the strongest existing sources of the terahertz light did not provide strong enough pulses to switch the orientation of a magnet to date.
The breakthrough was achieved by utilizing the efficient interaction mechanism of coupling between spins and terahertz electric field, which was discovered by the same team.
The scientists then developed and fabricated a very small antenna on top of the magnet to concentrate and thereby enhance the electric field of light. This strongest local electric field was sufficient to navigate the magnetization of the magnet to its new orientation in just one trillionth of a second.
The temperature of the magnet did not increase at all as this process requires energy of only one quantum of the terahertz light – a photon – per spin.
Dr Mikhaylovskiy said: “The record-low energy loss makes this approach scalable.
Future storage devices would also exploit the excellent spatial definition of antenna structures enabling practical magnetic memories with simultaneously maximal energy efficiency and speed.”
He plans to carry out further research using the new ultrafast laser at Lancaster University together with accelerators at the Cockroft Institute which are able to generate intense pulses of light to allow switching magnets and to determine the practical and fundamental speed and energy limits of magnetic recording.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
TI’s New Power-management Solutions Enable Scalable AI Infrastructures
10/14/2025 | Texas InstrumentsTexas Instruments (TI) debuted new design resources and power-management chips to help companies meet growing artificial intelligence (AI) computing demands and scale power-management architectures from 12V to 48V to 800 VDC.
Yamaha Boosts Surface-Mount Programming Efficiency with Latest Software Release
10/14/2025 | Yamaha Robotics SMT SectionYamaha Robotics SMT Section has introduced enhanced software tools to accelerate new product introduction (NPI) using YSUP-PG, the program generator for the company’s surface-mounters and inspection systems.
Western Digital Opens Expanded System Integration Test Lab to Accelerate Innovation in the AI and Cloud Era
10/14/2025 | BUSINESS WIREWestern Digital, the backbone of the AI-driven data economy, announced the opening of its expanded System Integration and Test (SIT) Lab, a state-of-the-art 25,600 square foot facility designed to accelerate customer success and unlock faster time to value.
Wiley Launches Interoperable Platform to Power Scientific Discovery in World's Leading AI Technologies
10/14/2025 | BUSINESS WIREWiley, a global leader in authoritative content and research intelligence, announced the launch of Wiley AI Gateway, the industry's first AI-native research intelligence platform that provides researchers access to trusted content from world-leading scholarly publishers through a single endpoint.
Momentus Signs $15 Million Global Agreement with Solstar Space
10/14/2025 | BUSINESS WIREMomentus Inc., a commercial space firm specializing in satellite solutions and in-space infrastructure, announced a three-year reciprocal services agreement with Solstar Space (Solstar).