Researchers Gain Key Insight Into Solar Material’s Soaring Efficiency
May 24, 2019 | University of Colorado BoulderEstimated reading time: 2 minutes

The rows of blue solar panels that dot landscapes and rooftops are typically made out of crystalline silicon, the workhorse semiconductor found in virtually every electronic device.
Over the last decade, Colorado State University researchers have led pioneering studies into improving the performance and cost of solar energy by fabricating and testing new materials that extend beyond the capabilities of silicon. They have focused on a material that shows promise for replacing silicon, called cadmium telluride.
In collaboration with partners at Loughborough University in the United Kingdom, researchers at CSU’s National Science Foundation-supported Next Generation Photovoltaics Center have reported a key breakthrough in how the performance of cadmium telluride thin-film solar cells is improved even further by the addition of another material, selenium. Their results were published in the journal Nature Energy earlier this month and are the subject of a “News and Views” article.
“Our paper goes right to the fundamental understanding of what happens when we alloy selenium to cadmium telluride,” said Kurt Barth, a director of the Next Generation Photovoltaics Center and an associate research professor in the Department of Mechanical Engineering.
Mystery Solved
Until now, it was not well understood why the addition of selenium has clocked record-breaking cadmium telluride solar cell efficiency – the ratio of energy output to light input – of just over 22 percent. Together with CSU collaborators W.S. Sampath and Amit Munshi, Barth and an international team have solved that mystery. Their experiments revealed that selenium overcomes the effects of atomic-scale defects in cadmium telluride crystals, providing a new path for more widespread, less expensive solar-generated electricity.
The cadmium telluride thin films that the CSU team makes in the lab use 100 times less material than conventional silicon solar panels. They are thus easier to manufacture, and they absorb sunlight at nearly the ideal wavelength. Electricity produced by cadmium telluride photovoltaic cells is the lowest-cost available in the solar industry, undercutting fossil fuel-based sources in many regions of the world.
According to the paper, electrons generated when sunlight hits the selenium-treated solar panel are less likely to be trapped and lost at the material’s defects, located at the boundaries between crystal grains as they are grown. This increases the amount of power extracted from each solar cell. Working with materials fabricated at CSU via advanced deposition methods, the team discovered this unexpected behavior by measuring how much light is emitted from selenium-containing panels.
Comparing Luminescence
As selenium is not evenly distributed across the panels, they compared luminescence emitted from areas where there was little-to-no selenium present and areas where the selenium was very concentrated.
“Good solar cell material that is defect-free is very efficient at emitting light, and so luminesces strongly,” said Tom Fiducia, the paper’s lead author and a Ph.D. student at the University of Loughborough, working with Professor Michael Walls. “It is strikingly obvious when you see the data that selenium-rich regions luminesce much more brightly than the pure cadmium telluride, and the effect is remarkably strong.”
The National Science Foundation has supported the work of CSU’s Next Generation Photovoltaics Center since 2009.
Suggested Items
SEMI, Purdue University Launch AI and Data Analysis Online Courses
05/22/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, today announced it has partnered with Purdue University to launch an online course series focused on artificial intelligence (AI) and data analysis techniques for the semiconductor industry.
Recognizing IPC Scholarships, Awards, and Opportunities
05/21/2025 | Charlene Gunter du Plessis, IPC Education FoundationThere was no better way to end our year in 2024 than by recognizing hard-working and driven students and educators for their involvement and interests in the electronics manufacturing industry. Through the IPC Scholarship and Awards program, we can help students invest in their future and reward their hardworking and dedicated accomplishments.
SAMI-AEC Sponsors the Best Graduation Project Award at King Saud University (KSU)
05/12/2025 | SAMI-AECSAMI Advanced Electronics Company (SAMI-AEC), a subsidiary of Saudi Arabian Military Industries (SAMI), proudly reaffirmed its commitment to nurturing national talent by sponsoring the Best Graduation Project Award at King Saud University (KSU) for the 26th consecutive year.
SEL Announces 2025-2026 Scholarship Recipients
05/07/2025 | Schweitzer Engineering LaboratoriesSchweitzer Engineering Laboratories (SEL) is pleased to announce the latest recipients of the SEL Scholarship Program for the 2025-2026 academic year. This year, SEL has awarded 15 scholarships, each valued at $5,000, to exceptional students pursuing degrees in engineering and applied technology.
DARPA, State of Maryland Sign Agreement to Propel Quantum Research
05/05/2025 | DARPADARPA and the State of Maryland have established a cooperative effort, the Capital Quantum Benchmarking Hub, to test and evaluate quantum computing prototypes and systems for national security and commercial applications.