DGIST Develops Next Generation Core Semiconductor Technology
May 24, 2019 | DGISTEstimated reading time: 2 minutes

The DGIST Department of Information and Communication Engineering developed a graphene-based high-performance transmission line with an improved operating speed of electrons than using the existing metal in high-frequency. This is expected to contribute greatly to next generation’s high-speed semiconductor and communication device with much faster processing speed than the existing one.
DGIST announced on Thursday, May 2 that Professor Jae Eun Jang’s team researched the high frequency transmission characteristics of single-layer graphene in the Department of Information and Communication Engineering, and developed a high-performance, high-frequency transmission line that induced an increase of device concentration inside graphene. This result showed the characteristics of high frequency transmission with great improvement that can replace the metal used in the existing high-speed semiconductor processing, and its potential use as a transmission line of graphene is expected in the future.
Due to the high-integration and high speed of semiconductor devices, the resistance of metal wire in which signals among devices are transmitted has increased geometrically, reaching the limit of permissible current density. To resolve this issue, carbon-based nano structures such as graphene and carbon nano tube, which are regarded as the substitutes of existing metals, have drawn attention as next generation new materials.
However, graphene has a hexagonal array of carbon, with very thin thickness of 0.3nm, electric conductivity that is 100 times greater than copper, and electron mobility that is 100 times faster than silicon. It has thus been mentioned as an electronic material that can replace the existing metal and semiconductor materials. However, pure graphene has too low device concentration of 1012 cm-2 with thin structural characteristics of nanometer, which results in too high resistance of graphene.
In order to overcome such limitations, Professor Jang’s team conducted a research to improve high frequency transmission characteristics of graphene by enhancing the device concentration inside graphene. By combining graphene and amorphous carbon, the team increased the device concentration of graphene and enhanced the electrical characteristics of graphene. The high frequency transmission of increased graphene was –8dB, which could be comparable to metal nano lines with hundreds of nano size.
The team also proved that defects inside graphene decrease the high frequency transmission of graphene and developed a new, stable doping technique that minimized internal defects. This new doping technique increased the device concentration of graphene by 2x 1013cm-2 and showed stable thermal properties and electrical characteristics.
The high frequency graphene transmission line developed by Professor Jang’s research team displayed high signal transmission efficiency and stable operating characteristics, which can be applied to the metal wiring processing of the existing semiconductor industry as well as next generation integrated circuit.
Professor Jae Eun Jang in the Department of Information and Communication Engineering said “Along with device technology, transmission line is a very important technology in the semiconductor research field. We have developed a core base technology that can enhance the high frequency transmission of graphene that can be used as next generation transmission line. Thanks to the results of convergence research by experts in nano engineering, electronic engineering, and physics, we expect to use the graphene on high-frequency circuit such as MMIC and RFIC.
This research was performed with the support of the Ministry of Science and ICT and basic research project of the National Research Foundation of Korea, and it has been selected to be published as a cover paper of ‘‘Advanced Functional Materials’, a worldwide international journal in material science.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.