Scientists Discover Signalling Circuit Boards Inside Body's Cells
May 24, 2019 | University of EdinburghEstimated reading time: 2 minutes

Cells in the body are wired like computer chips to direct signals that instruct how they function, research suggests. Unlike a fixed circuit board, however, cells can rapidly rewire their communication networks to change their behaviour.
The discovery of this cell-wide web turns our understanding of how instructions spread around a cell on its head. It was thought that the various organs and structures inside a cell float around in an open sea called the cytoplasm.
Signals that tell the cell what to do were thought to be transmitted in waves and the frequency of the waves was the crucial part of the message. Researchers at the University of Edinburgh found information is carried across a web of guide wires that transmit signals across tiny, nanoscale distances.
It is the movement of charged molecules across these tiny distances that transmit information, just as in a computer microprocessor, the researchers say.
These localised signals are responsible for orchestrating the cell's activities, such as instructing muscle cells to relax or contract. When these signals reach the genetic material at the heart of the cell, called the nucleus, they instruct minute changes in structure that release specific genes so that they can be expressed.
These changes in gene expression further alter the behaviour of the cell. When, for instance, the cell moves from a steady state into a growth phase, the web is completely reconfigured to transmit signals that switch on the genes needed for growth.
Researchers say understanding the code that controls this wiring system could help understand diseases such as pulmonary hypertension and cancer, and could one day open up new treatment opportunities.
The team made their discovery by studying the movement of charged calcium molecules inside cells, which are the key messages that carry instructions inside cells.
Using high-powered microscopes, they were able to observe the wiring network with the help of computing techniques similar to those that enabled the first ever image of a black hole to be obtained.
Scientists say their findings are an example of quantum biology - an emerging field that uses quantum mechanics and theoretical chemistry to solve biological problems.
The study, published in Nature Communications, was funded by the British Heart Foundation.
Professor Mark Evans, of the University of Edinburgh's Centre for Discovery Brain Sciences, said: "We found that cell function is coordinated by a network of nanotubes, similar to the carbon nanotubes you find in a computer microprocessor.
"The most striking thing is that this circuit is highly flexible, as this cell-wide web can rapidly reconfigure to deliver different outputs in a manner determined by the information received by and relayed from the nucleus. This is something no man-made microprocessors or circuit boards are yet capable of achieving."
Suggested Items
Summit Interconnect Participates in PCBAA Annual Meeting to Advance U.S. Electronics Policy
06/26/2025 | Summit Interconnect, Inc.Summit Interconnect was proud to participate in the 2025 Annual Meeting of the Printed Circuit Board Association of America (PCBAA), held in Washington, D.C. this June.
North American PCB Industry Sales Up 21.4% in May
06/20/2025 | IPCIPC announced the May 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.03.
Green Circuits Boosts Test Capacity with New Takaya APT-1600FD System
06/24/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce the purchase of its fourth Takaya APT-1600FD Double-sided Flying Probe Test System.
ASC Sunstone Circuits and Screaming Circuits Partner to Launch Online Assembly Parts Ordering – A New Step Toward Seamless PCB Production
06/23/2025 | ASC SunstoneIn a major step toward simplifying the PCB manufacturing and assembly process, ASC Sunstone Circuits and Screaming Circuits are proud to announce the launch of a new online assembly parts ordering feature, now available through Sunstone.com. This enhanced capability allows customers to source assembly components as part of their PCB order, creating a fully integrated experience from bare board fabrication to finished assembly.
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).