Lab Grows Stable, Ultrathin Magnets
May 27, 2019 | Rice UniversityEstimated reading time: 3 minutes

Rice University researchers have simplified the synthesis of a unique, nearly two-dimensional form of iron oxide with strong magnetic properties that is easy to stack atop other 2D materials.
The material, epsilon iron(III) oxide, shows promise as a building block for exotic nanoscale structures that could be useful for spintronic devices, electronic or storage applications that take advantage of not only the charge of electrons but also their spin states.
Researchers at Rice’s Brown School of Engineering and Wiess School of Natural Sciences reported in the American Chemical Society journal Nano Letters that they had produced oxide flakes through simple chemical vapor deposition. The flakes are easily transferable from their growth substrates and retain their magnetic properties over the long term at room temperature.
“Iron oxide is nothing new,” said Rice materials scientist and co-principal investigator Jun Lou. “But this epsilon phase is very rare. In epitaxial growth (in which the crystal aligns with the atomic structure of the surface), the bonding is strong and crystals are hard to transfer. But one of the features of this crystal structure is that it has relatively weak interaction with the substrate. You can pick it up and put it on different things.”
“An ultrathin magnetic material like this, which maintains its magnetic properties up to room temperature and can be integrated with other materials by stacking, is very exciting,” said Rice physicist Doug Natelson, a co-principal investigator with Lou and Scott Crooker of Los Alamos National Laboratory. “It will be a great testing ground for seeing how magnetic properties act across interfaces, an important aspect relevant to future information technologies.”
Lou said the material is technically not 2D, because of the prismlike orthorhombic atomic structure that gives the lattice its unusual properties. “But basically, it has all the features of a 2D magnet,” he said.
He said other 2D magnetic materials discovered to this point have two negative characteristics: Their Curie temperature is far below room temperature, meaning the materials need to be cooled to preserve their magnetic effects, or the materials are not structurally stable and decompose quickly in ambient conditions.
“Our material has neither of those problems,” Lou said. “It’s air-stable and the Curie temperature is slightly above room temperature. If we test the material we grew a year ago now, it still shows the same behavior.”
If the material were as thick as a refrigerator magnet, it too would stick. “The magnetic effect is very strong, around 300 milliTeslas,” Lou said. “But this material cannot exist in bulk. It will phase out of epsilon into some other kind of oxide.”
The researchers grew the smooth flakes, as thin as 5.1 nanometers, on silicon dioxide and mica substrates. They successfully tested its ability to bond via the weak van der Waals force with graphene. The flakes’ magnetic properties, measured at Los Alamos, were found to be stable at room temperature with a magnetic field between 200 and 400 milliTeslas.
The research is the result of an interdisciplinary Rice IDEA proposal by Lou, Natelson and Rice chemist Gustavo Scuseria to investigate the magnetic properties of 2D materials. They plan to combine the oxide with more 2D materials to see how its magnetic field affects the properties of heterostructures. “This interfacial coupling process is going to be very interesting for us,” Lou said.
Rice alumnus Jiangtan Yuan, now a postdoctoral researcher at Northwestern University, and Andrew Balk of the National High Magnetic Field Laboratory at Los Alamos, New Mexico, are co-lead authors of the study. Co-authors are assistant research professor Hua Guo, graduate students Qiyi Fang and Xuanhan Zhao, undergraduate Sahil Patel and research specialist Tanguy Terlier of the Shared Equipment Authority at Rice. Crooker is a technical staff member of the National High Magnetic Field Laboratory. Natelson is a professor of physics and astronomy, of electrical and computer engineering and of materials science and nanoengineering. Lou is a professor of materials science and nanoengineering and of chemistry.
The National Science Foundation, the Welch Foundation, the Department of Energy Basic Energy Sciences program and Rice IDEA supported the research.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.