Superconductor Films Convert Heat Into Electricity
May 27, 2019 | RIKENEstimated reading time: 1 minute

When thinned down to a sheet a few atoms thick, the superconductor iron selenide (FeSe) can efficiently convert heat into electricity, researchers at RIKEN have discovered. This opens up the possibility that similar multifunctionality may be lurking in other two-dimensional materials.
Ultrathin films often behave quite differently from the same material in bulk form. For example, bulk FeSe superconducts at temperatures below 8 kelvin (−265 degrees Celsius), whereas a single-atom layer of FeSe superconducts at 65 kelvin. This is surprising since the conductivity of semiconductors usually drops the thinner they become.
Sunao Shimizu, who was working at the RIKEN Center for Emergent Matter Science (CEMS) at the time of the study, along with his CEMS colleagues and other collaborators, has now found that in addition to high-temperature superconductivity, ultrathin films of FeSe exhibit excellent thermoelectric properties. This is the first time that a material has been shown to have both properties.
Thermoelectric materials are of great interest because they can generate electricity from waste heat and thus could be used to power devices that currently require batteries or some other power source.
The researchers used a clever setup to perform the measurements. They immersed the FeSe film in an ionic liquid (Fig. 1). Then, by controlling the voltage applied to the film and the temperature, the scientists electrochemically etched the film down to a few monolayers. In this way, they could control the film thickness while simultaneously measuring the film’s electrical and thermoelectric properties.
“Our method is very powerful for realizing ideal conditions, such as a tunable carrier density and structures free from significant disorder,” explains Shimizu. “It is thus a very effective way to elucidate the intrinsic performance of materials.”
The team had not anticipated that FeSe would exhibit such good thermoelectric properties. “It came as a big surprise to us when we observed the enhancement of the thermoelectric properties in nanothick FeSe thin films,” Shimizu recalls.
This finding might represent just the tip of the iceberg. “The unprecedented coexistence of a giant thermoelectric power factor and high-temperature superconductivity in ultrathin FeSe suggests that other multifunctional materials are waiting to be found,” notes Shimizu. “This illuminates a new research direction for functional thermoelectric materials.”
The team will now use the same method to look at other thin materials. “We intend to extend our study by characterizing the thermoelectric properties of other two-dimensional materials as well as nanostructures,” says Shimizu.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.