Fungal Batteries Will Store Alternative Energy
May 28, 2019 | DTUEstimated reading time: 3 minutes

Researchers from DTU Bioengineering and Aalborg University have joined the quest to find mould fungi that are particularly good at producing pigments—quinones—which can be used to store energy.
The researchers have designed a fungal battery prototype, and with a new donation of EUR 2 million from The Novo Nordisk Foundation, the researchers will speed up their search for suitable fungi.
Great Potential in Fungal Quinones
“There is great interest in developing new batteries to replace batteries using toxic metals such as lithium, copper and zinc. Fungal quinones offer a very promising alternative, and unlike similar substances extracted from oil, fungal quinones are 100 per cent degradable,” says Jens Christian Frisvad, Professor at DTU Bioengineering and co-applicant to the research project ‘Fungal Batteries for Storing Sustainable Energy’.
The idea of using fungi in batteries was developed by researchers at Aalborg University. To speed up their research, the researchers teamed up with DTU, enabling them to gain access to suitable fungi in DTU Bioengineering’s large fungal collection.
Jens Christian Frisvad explains that the researchers have identified two fungi that produce large quantities of quinones that can be used in either the positive or negative pole of a battery, where they can accumulate or discharge the energy. The quinones in question come from the two mould fungi Penicillium and Alternaria.
At DTU, undergraduate student Jonathan Eggertsen Rørth will investigate whether the mould fungus Penicillium can grow and produce quinones on sustainable and affordable growth media—such as apple peels—which can subsequently be composted or used as animal feed.
Researchers at DTU Bioengineering will also screen a large number of other mould fungi to find the most suitable ones. They are investigating whether the fungi produce toxins that could be difficult to get rid of at a later stage, and they sequence the fungi’s genomes in order to clarify which fungi can be used in industrial production. Finally, they examine how the quinones from the fungi can be purified.
“We focus on making the production of the batteries as green as possible. This applies to the batteries’ entire manufacturing process, but also to what we do with the batteries once they have outlived their use. We need to know whether the mould fungi's quinones are toxic, when they leach from the batteries and seep into the ground. The knowledge we have about fungal metabolites tells us that they will be broken down by bacteria in the soil, but these environmental effects must also be described in the project,” says Jens Christian Frisvad.
Meanwhile, researchers from Aalborg University examine what it takes to connect the fungal batteries to the existing electricity grid, and to develop batteries that can be connected to wind turbine and solar cell installations,” explains Jens Muff, Associate Professor at Aalborg University.
“Fungal batteries are of a type called redox flow batteries, which have particularly favourable properties when it comes to storing large amounts of energy. Furthermore, they are cheap to produce and easy to get rid of in a sustainable way. However, they will be bigger than ordinary batteries, since fungal quinones are not as energy-dense and therefore not as suitable for mobile technologies, where the size of the battery is crucial,” says Jens Muff.
The researchers from DTU and Aalborg University have three years to develop a demonstration model of a sustainable battery, to find a cheap way to produce mould fungi and to extract the quinones the batteries will be composed of. In addition, their research will describe how the batteries can be connected to the existing electricity grid.
Unique Fungal Collection
DTU Bioengineering's fungal collection contains approximately 40,000 fungi, which have been chemically characterized and which represent many species used in biotechnology, but also those that destroy foodstuffs and those found in indoor environments or in soil and marine environments. Many species are represented by several hundred isolates, which means that the variation within these species are known, and consequently the best strain for a specific biotechnological purpose can be selected.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.