'Noise-Cancelling Headphones’ for Quantum Computers
May 29, 2019 | UNSW SydneyEstimated reading time: 3 minutes

A new project to develop an unprecedented capability in quantum computing—'noise-cancelling headphone' for quantum computers—is set to increase the stability of fragile quantum building blocks, or qubits.
A team of engineers is building the capacity to cancel noise around a ‘data qubit’ by detecting the noise on a ‘spectator qubit’ in its vicinity.
A team of scientists and engineers at UNSW Sydney, Griffith University and University of Technology Sydney, in partnership with seven leading US institutions, has launched a new project to develop an unprecedented capability in quantum computing: a “noise-cancelling headphone” for quantum computers, set to increase the stability of fragile quantum building blocks, or qubits.
“Developing quantum computing technology is challenging – quantum information is extremely fragile,” says Professor Howard Wiseman, Director of the Centre for Quantum Dynamics at Griffith University.
Unlike classical computers, where digital data is stored in bits whose ‘0’ or ‘1’ value can be stored and manipulated very robustly, quantum computers encode information in delicate superposition states of quantum bits, or ‘qubits’.
There, the information can be processed with exponentially more computational power than in a classical computer, but it is also highly susceptible to any kind of environmental noise.
“To build a reliable quantum computer, we must shield the quantum bits from that noise in the environment,” Professor Wiseman says.
That’s the problem that the Australian group’s new project – set up by the Department of Defence’s Next Generation Technologies Fund, in scientific coordination with the U.S. Army Research Office – is trying to solve.
Specifically, the team is building the capacity to cancel noise around a ‘data qubit’ by detecting the noise on a ‘spectator qubit’ in its vicinity, and using advanced machine learning algorithms to adapt the controls that encode information in the data qubit.
“Our expertise is in building single-atom quantum bits in silicon,” says Andrea Morello, Scientia Professor of Quantum Engineering at UNSW Sydney and one of the leaders of the project. Morello’s team was the first in the world to encode quantum information in a silicon chip.
“Until now we have used phosphorus as the data qubit, since it is the simplest atom to use in silicon. But our technology, based on ion implantation, allows us to choose from many other types of atoms, some of which are more sensitive to noise. The other atom will act like a ‘spectator in the theatre’, or like the microphone in a noise-cancelling headphone,” he says.
Professor Andrea Morello explaining how noise-cancelling headphones work for quantum computers.
The information about the noise, picked up by the ‘spectator qubit’, needs to be processed in real time in order to feed the ‘data qubit’ with a signal that cancels out the effect of the noise.
“We will develop theoretical methods to analyse and process the noise around the quantum bits,” says Dr Gerardo Paz-Silva of Griffith University, recipient of a Discovery Early Career Award of the Australian Research Council, and leader of the overall project.
“This needs to be done very efficiently, because extracting information out of quantum systems is itself a delicate process.”
To ‘close the loop’ in the system, the consortium includes a team of leading researcher in quantum machine learning, based at University of Technology Sydney. Dr Chris Ferrie, the group leader at UTS, says machine learning is ideally suited to make on-the-flight decisions on how best to counteract the noise that risks destroying the information on the data qubit.
“The data-spectator qubit system is a very challenging testbed for our algorithms. What we will develop for this application is likely to have broad impact even outside of quantum computing, for instance for advanced tasks in defence and data analytics.”
“This project has the potential to deliver a breakthrough in quantum technologies which will lead to important applications in Defence and beyond,” says Chief Defence Scientist Professor Tanya Monro.
“This is a great example of how Defence can facilitate international research projects that harness excellence in research in Australia and create a pathway to impact from new discoveries.”
The development of quantum computer is likely to be one of the most transformative technologies of the 21st century, with impact ranging from data security, complex optimization problems, chemistry and pharmaceutics.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.
Walt Custer: Making Data Interesting
09/03/2025 | Andy Shaughnessy, I-Connect007I just learned that IPC Hall of Famer Walt Custer has passed away at 81. I first met Walt about 20 years ago when I started covering the fabrication industry. Right away, he started telling me which companies to watch and which trends to follow. This was in the years following 9/11, and things were still pretty fluid.