SpaceX Rocket Delivers Aggie Capstone Project To International Space Station
May 30, 2019 | Texas A&M UniversityEstimated reading time: 3 minutes

The SpaceX Falcon 9 rocket with the Dragon cargo module lifted off from the Florida Space Launch Complex 40 at Cape Canaveral Air Force Station on May 4. The Commercial Resupply Services mission (CRS-17) launched over 5,550 pounds of NASA cargo into orbit and successfully delivered it to the International Space Station (ISS) on May 6.
Included in this cargo was a Texas A&M University undergraduate capstone team’s final project, an experiment facility known as Hermes, which will be used to conduct experiments on asteroid particles in space.
The team, made up of Multidisciplinary Engineering Technology (MXET) mechatronics students Luis Orozco (embedded software), Dustin Tish (hardware systems) and Jeremy Coffelt (Python software, security and communications), celebrated the culmination of over a year’s work as they watched their project be launched into space.
The students took over the Hermes prototype that was developed by an electronic systems engineering technology capstone team and moved their design to the three production systems that underwent testing, validation and acceptance by T STAR, NASA engineers and scientists at the Johnson Space Center.
The first of its kind, Hermes is a Class-1E experiment facility that will host and support four microgravity experiment tubes that will be changed out every three to six months by an ISS mission specialist through 2024. The first set of four Hermes experiments will investigate microgravity effects on regolith (moon dust) simulants.
“This is the type of project that clearly demands the broad-based experiential education available to students pursuing the new MXET mechatronics focus area at Texas A&M,” stated Matthew Leonard, president of T STAR.
Hermes is a self-contained system that is responsible for the monitoring and control of all aspects of the facility. The system is composed of seven embedded intelligence devices. Six of them use a real-time operating system environment to monitor and control particular aspects of the facility or an individual experiment. One of the devices is a BeagleBone Black, which is the overall system and communications manager providing near real-time data and control capabilities for the scientists and engineers on earth. Hermes provides lighting, imagery and vacuum resources to each experiment while transferring all data collected to both the solid-state storage that is part of the experiment cassette and the ISS network drive to enable downloading on Earth. In addition, Hermes supports the addition of an external accelerometer that provides microgravity data to the scientists.
The public-private-academic model of applied research developed by T STAR has made the design and development of Hermes an unprecedented success. Using a capstone project to undertake the initial prototype design before moving that project to an applied research effort for product delivery is a unique approach to developing space-worthy systems within budget and schedule requirements.
Helikite has produced a working prototype capable of measuring small fluctuations in magnetic fields. This system will be tested in late June when it is attached to an ultralight aircraft and then towed by a ground-based vehicle. The system will allow NASA scientists to evaluate whether or not it could one day be used on Mars.
The Cardinal project implements a new approach to collecting asteroid particles at high altitudes. It is intended to be an experimental facility attached to a high-altitude weather balloon. Once launched, it will monitor several environmental parameters including barometric pressure. When a preset altitude is reached, the Cardinal will automatically open its collection chamber and begin rotating the dust collection arm at a fixed rate. Once the system determines that the balloon is in position, the rotating arm will be stowed and the chamber closed. This new concept of collecting particles will provide a longer mission time with less contamination from the collection system itself.
From the Hermes project to Helikite and Cardinal, Aggie students are changing the future of space experimentation and exploration.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Analog Devices Launches ADI Power Studio™ and New Web-Based Tools
10/14/2025 | Analog Devices, Inc.Analog Devices, Inc., a global semiconductor leader, announced the launch of ADI Power Studio, a comprehensive family of products that offers advanced modeling, component recommendations and efficiency analysis with simulation. In addition, ADI is introducing early versions of two new web-based tools with a modernized user experience under the Power Studio umbrella:
Elementary, Mr. Watson: High Power: When Physics Becomes Real
10/15/2025 | John Watson -- Column: Elementary, Mr. WatsonHave you ever noticed how high-speed design and signal integrity classes are always packed to standing room only, but just down the hall, the session on power electronics has plenty of empty chairs? It's not just a coincidence; it's a trend I've observed over the years as both an attendee and instructor.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Bluepath Robotics Optimizes AMR Fleets with Inductive Charging Solution from Wiferion
10/09/2025 | WiferionIn a dynamic and highly competitive industry such as logistics, efficient and uninterrupted material flows are of crucial importance. To ensure maximum uptime for its robots, Bluepath Robotics, which specializes in autonomous mobile robots (AMR), needed a reliable and powerful power supply.