Establishing the Ultimate Limits of Quantum Communication Networks
June 3, 2019 | University of YorkEstimated reading time: 1 minute

At the moment, sensitive data is typically encrypted and then sent across fibre-optic cables and other channels together with the digital “keys” needed to decode the information. However, the data can be vulnerable to hackers.
Quantum communication takes advantage of the laws of quantum physics to protect data. These laws allow particles—typically photons of light —to transmit the data using quantum bits, or qubits.
Superior Capabilities
Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits.
Once they scaled up to larger sizes, these devices will have far-superior capabilities than current classical computers. For instance, they may process extremely large numbers in just a few seconds, speed-up many fundamental mathematical operations, and perfectly simulate molecular and biological processes.
One challenge will be to connect quantum computers together, in order to create a quantum-version of the Internet or "quantum Internet."
However, an important but unanswered question remains: what is the ultimate rate at which one can transmit secret messages or quantum systems from one remote quantum computer to another?
Notoriously difficult
Writing in the journal Communications Physics, Professor Stefano Pirandola, from the University of York’s Department of Computer Science, said scientists have answered the question.
Prof Pirandola studied the optimal working mechanism of a future quantum Internet, and also provided the ultimate secret-key capacities that can potentially be achieved.
He said: “Studying quantum networks is notoriously difficult, but recent mathematical tools developed in quantum information theory have allowed us to completely simplify the analysis.
Qubits
“An outstanding question was to compute the maximum number of elementary quantum systems (known as qubits) that could be reliably transmitted from one user of the network to another, or similarly, the maximum number of completely secret bits that these remote users could share.
“This number has now a precise analytical formula.”
Furthermore, the study reveals that the classical-inspired strategy of simultaneously sending qubits through multiple routes of the network can remarkably boost the rate, i.e., the speed of the quantum communication between any two remote users.
Suggested Items
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Priority Software Announces the New, Game-Changing aiERP
06/12/2025 | Priority SoftwarePriority Software Ltd., a leading global provider of ERP and business management software announces its revolutionary aiERP, leveraging the power of AI to transform business operations.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.