Establishing the Ultimate Limits of Quantum Communication Networks
June 3, 2019 | University of YorkEstimated reading time: 1 minute

At the moment, sensitive data is typically encrypted and then sent across fibre-optic cables and other channels together with the digital “keys” needed to decode the information. However, the data can be vulnerable to hackers.
Quantum communication takes advantage of the laws of quantum physics to protect data. These laws allow particles—typically photons of light —to transmit the data using quantum bits, or qubits.
Superior Capabilities
Multinational corporations, such as IBM and Google, are now building intermediate-size quantum computers with increasing number of quantum units or qubits.
Once they scaled up to larger sizes, these devices will have far-superior capabilities than current classical computers. For instance, they may process extremely large numbers in just a few seconds, speed-up many fundamental mathematical operations, and perfectly simulate molecular and biological processes.
One challenge will be to connect quantum computers together, in order to create a quantum-version of the Internet or "quantum Internet."
However, an important but unanswered question remains: what is the ultimate rate at which one can transmit secret messages or quantum systems from one remote quantum computer to another?
Notoriously difficult
Writing in the journal Communications Physics, Professor Stefano Pirandola, from the University of York’s Department of Computer Science, said scientists have answered the question.
Prof Pirandola studied the optimal working mechanism of a future quantum Internet, and also provided the ultimate secret-key capacities that can potentially be achieved.
He said: “Studying quantum networks is notoriously difficult, but recent mathematical tools developed in quantum information theory have allowed us to completely simplify the analysis.
Qubits
“An outstanding question was to compute the maximum number of elementary quantum systems (known as qubits) that could be reliably transmitted from one user of the network to another, or similarly, the maximum number of completely secret bits that these remote users could share.
“This number has now a precise analytical formula.”
Furthermore, the study reveals that the classical-inspired strategy of simultaneously sending qubits through multiple routes of the network can remarkably boost the rate, i.e., the speed of the quantum communication between any two remote users.
Suggested Items
AI Chips for the Data Center and Cloud Market Will Exceed US$400 Billion by 2030
05/09/2025 | IDTechExBy 2030, the new report "AI Chips for Data Centers and Cloud 2025-2035: Technologies, Market, Forecasts" from market intelligence firm IDTechEx forecasts that the deployment of AI data centers, commercialization of AI, and the increasing performance requirements from large AI models will perpetuate the already soaring market size of AI chips to over US$400 billion.
ZenaTech’s ZenaDrone Tests Proprietary Camera Enabling IQ Nano Drone Swarms for US Defense Applications, Blue UAS Submission
05/09/2025 | Globe NewswireZenaTech, Inc., a technology company specializing in AI (Artificial Intelligence) drones, Drone as a Service (DaaS), enterprise SaaS, and Quantum Computing solutions, announces that its subsidiary ZenaDrone is testing a new proprietary specialized camera that enables more efficient indoor applications such as inventory and security management, when utilizing IQ Nano drone swarms for commercial and US defense applications.
New Issue of Design007 Magazine: Are Your Data Packages Less Than Ideal?
05/09/2025 | I-Connect007 Editorial TeamWhy is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal data package for your design.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
IPC White Paper Maps the Regulatory Terrain for Electronics Suppliers in E-Mobility Sector
05/07/2025 | IPCElectronics suppliers supporting the rapidly growing e-mobility sector are facing a dramatic escalation in environmental and social governance (ESG) compliance expectations. A new white paper from IPC’s e-Mobility Quality and Reliability Advisory Group provides a comprehensive overview of the evolving regulatory landscape and outlines the data infrastructure needed to stay ahead.