A More Accurate, Low-Cost 39 Ghz Beamforming Transceiver for 5G Communications
June 3, 2019 | Tokyo TechEstimated reading time: 2 minutes

Researchers at Tokyo Tech and NEC Corporation, Japan, present a 39 GHz transceiver with built-in calibration for fifth-generation (5G) applications. The advantages to be gained include better quality communications as well as cost-effective scalability.
Image Caption: CMOS chips on an 18 mm x 163.5 mm evaluation-board.
A team of more than 20 researchers at Tokyo Tech and NEC Corporation has successfully demonstrated a 39 GHz transceiver that could be used in the next wave of 5G wireless equipment including base stations, smartphones, tablets and Internet-of-Things (IoT) applications.
Although research groups including the current team have until now largely focused on developing 28 GHz systems, 39 GHz will be another important frequency band for realizing 5G in many parts of the world.
The new transceiver (shown in Figure 1) is based on a 64-element (4 x 16) phased-array1 design. Its built-in gain phase calibration means that it can improve beamforming2 accuracy, and thereby reduce undesired radiation and boost signal strength.
Figure 1. A micrograph of the chip and the 64-element module.
The transceiver, based on a 64-element phased-array design, takes up a chip area of 12 mm2.
Fabricated in a standard 65-nanometer CMOS3 process, the transceiver's low-cost silicon-based components make it ideal for mass production — a key consideration for accelerated deployment of 5G technologies.
The researchers showed that the built-in calibration has a very low root-mean-square (RMS) phase error of 0.08°. This figure is an order of magnitude lower than previous comparable results. While transceivers developed to date typically suffer from high gain variation of more than 1 dB, the new model has a maximum gain variation of just 0.04 dB over the full 360◦ tuning range.
"We were surprised to achieve such a low gain variation when actually using the calibration based on our local-oscillator (LO) phase-shifting approach," says project leader, Kenichi Okada of Tokyo Tech.
In addition, the transceiver has a maximum equivalent isotropic radiated power (EIRP)4 of 53 dBm. This is an impressive indication of the output power of the 64 antennas, the researchers say, particularly for low-cost CMOS implementation.
Indoor testing (under anechoic chamber conditions5), which involved a one-meter, over-the-air measurement, demonstrated that the transceiver supports wireless transmission of a 400 MHz signal with 64QAM.
"By increasing the array scale, we can achieve greater communication distance," Okada says. "The challenge will be to develop the transceiver for use in smartphones and base stations for 5G and beyond."
The work is being presented at the 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)outer in Boston, Massachusetts, US, as part of the morning session (Session RTu2E) to be held on 4 June 2019. The paper of this work "A 39 GHz 64-Element Phased-Array CMOS Transceiver with Built-in Calibration" by Yun Wang et al., receives the best student paper award.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Advint Incorporated Brings Artificial Intelligence to Electroplating Training
09/11/2025 | Advint IncorporatedAdvint Incorporated is introducing a new dimension to its electroplating training programs: the integration of Artificial Intelligence (AI). This initiative reflects the company’s commitment to providing PCB fabricators and manufacturers in the USA and Canada with training that is practical, forward-looking, and directly relevant to today’s production challenges.
The Signal Integrity Issue: Design007 Magazine September 2025
09/09/2025 | I-Connect007 Editorial TeamAs the saying goes, “If you don’t have signal integrity problems now, you will eventually.” This month, our experts share a variety of design techniques that can help PCB designers and design engineers achieve signal integrity.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
SMT Perspectives and Prospects: Warren Buffett’s Perpetual Wisdom, Part 1
07/29/2025 | Dr. Jennie Hwang -- Column: SMT Perspectives and ProspectsOver the years, I have cherished the lessons by Warren Buffett and Charlie Munger at the Berkshire Hathaway annual shareholders meeting in Omaha, Nebraska. This year, I was among the more than 40,000 who attended the May 3 meeting. Millions more from around the world, including from the UK, Germany, Japan, China, Panama, and Guatemala, tuned in remotely and via CNBC’s livestream.
Mesa West, Advanced West Announce Strategic Partnership
06/15/2025 | I-Connect007Mesa West is proud to announce that they have officially joined forces with Advanced West. This strategic partnership brings together two industry leaders, uniting strengths to better serve customers through enhanced capabilities, expanded offerings, and continued commitment to quality.