A Cathode Material for Organic Ultrafast Metal-Ion Batteries Has Been Developed
June 4, 2019 | SkoltechEstimated reading time: 2 minutes
Researchers from Skoltech Center for Energy Science and Technology, IPCP RAS and D.I. Mendeleev Russian University of Chemical Technology have created a new polymer cathode material for ultrafast metal-ion batteries with superior characteristics. The results of this work were published in the Journal of Material Chemistry A.
In recent decades, world energy consumption has been increasing significantly due to population growth, industrialization and the development of household appliances and electronics, with a particular increase in the number of mobile devices and electric vehicles. There is therefore an urgent need to develop electrochemical energy storage technologies and devices. Despite the fact that lithium-ion batteries based on inorganic layered oxides dominate the market, further upgrading their performance is difficult. This problem can be solved by the application of organic compounds as cathode materials.
Some of their advantages, on which there should be an emphasis, are high energy density, charge/discharge rate capability and resistance to mechanical deformations. Another important advantage is their high environmental friendliness, since organic materials consist of only naturally abundant elements (C, H, N, O, S) and can be obtained from renewable resources. In the absence of heavy metals, their disposal can be carried out by combustion or using other methods for the recycling of household waste. Moreover, the use of organic cathodes means that expensive lithium compounds are no longer required.
Among the numerous projects of Professor Pavel Troshin’s research team, special attention is being paid to cathode materials based on polyphenylamine type compounds, which is one of the most promising classes of organic cathode materials for metal-ion batteries.
“Cathode materials based on polytriphenylamine and its analogues described in the literature possess outstanding characteristics in metal-ion batteries. In particular, they demonstrate high discharge potential, cyclic stability, and operate at high charge/discharge current rates. However, their low specific capacities limit the commercialization of this group of materials. Therefore, we created the task to design and study a group of new macromolecules, which potentially have a higher energy density. Some of the compounds, but one in particular, demonstrated an excellent performance while charged and discharged at the current densities of up to 200C (full charge and discharge takes 18 seconds only, editor’s note). It is important that besides lithium, we also succeeded in assembling sodium- and potassium-ion batteries based on the same material,” says the first author of the published work, Skoltech PhD student, Filipp Obrezkov.
Thus, the obtained results confirm the significant potential for using organic compounds as cathodes for ultrafast metal-ion batteries. Further development of this project might result in the development of a new generation of battery materials with even higher specific capacity at a high charging rate, and capable of satisfying the future needs of the portable devices and electric vehicles market.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.