Another Major Step Towards Room-Temperature Superconductivity
June 10, 2019 | MAX-PLANCK-GESELLSCHAFTEstimated reading time: 2 minutes

Fewer power plants, less greenhouse gases and lower costs: enormous amounts of electricity could be saved if researchers discovered the key to superconductivity at environmental temperatures. Because superconductors are materials that conduct electric energy without losses. A team from the Max Planck Institute for Chemistry (MPIC) in Mainz has come a step closer to this goal. The researchers around Mikhail Eremets synthesized lanthanum hydride, a material that shows zero electrical resistance under high pressure at minus 23 degrees Celsius. So far, the record for high-temperature superconductivity was minus 70 degrees Celsius.
Powerful pressure: in a stamp cell not even the size of a fist, more than a million bar can be produced between two conically ground diamonds, whereby some materials become superconducting at relatively high temperatures.
“Our study is a major step and milestone on the road to superconductivity at room temperature”, says Eremets, a research group leader at MPIC. For their experiments, the scientists synthesized small amounts of lanthanum hydride (LaH10). In a special chamber only a few hundred cubic microns in size, they exposed the samples to a pressure of 1.7 megabar, which is 1.7 million times the atmospheric pressure, and then cooled them. After reaching the critical temperature of minus 23 degrees Celsius (250 K), the electrical resistance of the samples dropped to zero. Since the superconductivity cannot be clearly demonstrated by resistance measurements alone, the researchers additionally performed measurements in an external magnetic field. A magnetic field disturbs the superconductivity, causing the transition to shift to lower temperatures. That is exactly what the physicists observed.
High pressure produces metallic lanthanum hydride
The high pressure produces metallic lanthanum hydride The latest success builds on major breakthrough that Eremets and colleagues had achieved a few of years ago: they discovered conventional superconductivity in hydrogen sulfide under 2,5 megabar pressure at minus 70 degrees Celsius, which was at much higher temperature than ever observed before. Apparently, hydrogen-rich compounds are capable of superconducting at particularly high temperatures - if they can be brought into a metallic state. In this case the pressure forms the hydride from the metal lanthanum and the hydrogen gas. This is exactly what the high pressure causes.
It is also necessary to put the lanthanum hydride under pressure in order for the hydride to form from the metallic lanthanum and hydrogen. Until the discovery of high-temperature superconductivity in hydrogen sulfide, copper-containing ceramics held the superconducting records. However, even the best of these materials loses their electrical resistance only at minus 135 degrees Celsius. Additionally, the superconductivity also arises through a different mechanism than with metallic superconductors. Therefore, the ceramic superconductors are called unconventional. The conventional metallic superconductors usually lose their electrical resistance at much lower temperatures. That´s why the discovery of high-temperature superconductivity in metallic hydrogen sulfide attracted much attention among physicists.
In search of superconductivity at even higher temperatures
With further experiments, the Mainz Max Planck researchers demonstrated that lanthanum hydride is one of the conventional superconductors. They replaced the hydrogen in the lanthanum hydride with the heavier hydrogen isotope deuterium. As predicted by the Bardeen-Cooper-Schrieffer (BCS) theory, the critical temperature of superconductivity in the lanthanum deuteride strongly decreased to minus 93 degrees Celsius (180 K). However, the team of Mikhail Eremets is not satisfied with the current success. Currently, the scientists are searching for superconductivity in yttrium hydride. “With this material we expect to achieve superconductivity at even higher, ambient temperatures”, says Eremets.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.