Algorithm Tells Robots Where Nearby Humans Are Headed
June 13, 2019 | MITEstimated reading time: 5 minutes
In 2018, researchers at MIT and the auto manufacturer BMW were testing ways in which humans and robots might work in close proximity to assemble car parts. In a replica of a factory floor setting, the team rigged up a robot on rails, designed to deliver parts between work stations. Meanwhile, human workers crossed its path every so often to work at nearby stations.
The robot was programmed to stop momentarily if a person passed by. But the researchers noticed that the robot would often freeze in place, overly cautious, long before a person had crossed its path. If this took place in a real manufacturing setting, such unnecessary pauses could accumulate into significant inefficiencies.
The team traced the problem to a limitation in the robot’s trajectory alignment algorithms used by the robot’s motion predicting software. While they could reasonably predict where a person was headed, due to the poor time alignment the algorithms couldn’t anticipate how long that person spent at any point along their predicted path — and in this case, how long it would take for a person to stop, then double back and cross the robot’s path again.
Now, members of that same MIT team have come up with a solution: an algorithm that accurately aligns partial trajectories in real-time, allowing motion predictors to accurately anticipate the timing of a person’s motion. When they applied the new algorithm to the BMW factory floor experiments, they found that, instead of freezing in place, the robot simply rolled on and was safely out of the way by the time the person walked by again.
“This algorithm builds in components that help a robot understand and monitor stops and overlaps in movement, which are a core part of human motion,” says Julie Shah, associate professor of aeronautics and astronautics at MIT. “This technique is one of the many way we’re working on robots better understanding people.”
Shah and her colleagues, including project lead and graduate student Przemyslaw “Pem” Lasota, will present their results this month at the Robotics: Science and Systems conference in Germany.
Clustered up
To enable robots to predict human movements, researchers typically borrow algorithms from music and speech processing. These algorithms are designed to align two complete time series, or sets of related data, such as an audio track of a musical performance and a scrolling video of that piece’s musical notation.
Researchers have used similar alignment algorithms to sync up real-time and previously recorded measurements of human motion, to predict where a person will be, say, five seconds from now. But unlike music or speech, human motion can be messy and highly variable. Even for repetitive movements, such as reaching across a table to screw in a bolt, one person may move slightly differently each time.
Existing algorithms typically take in streaming motion data, in the form of dots representing the position of a person over time, and compare the trajectory of those dots to a library of common trajectories for the given scenario. An algorithm maps a trajectory in terms of the relative distance between dots.
But Lasota says algorithms that predict trajectories based on distance alone can get easily confused in certain common situations, such as temporary stops, in which a person pauses before continuing on their path. While paused, dots representing the person’s position can bunch up in the same spot.
“When you look at the data, you have a whole bunch of points clustered together when a person is stopped,” Lasota says. “If you’re only looking at the distance between points as your alignment metric, that can be confusing, because they’re all close together, and you don’t have a good idea of which point you have to align to.”
The same goes with overlapping trajectories — instances when a person moves back and forth along a similar path. Lasota says that while a person’s current position may line up with a dot on a reference trajectory, existing algorithms can’t differentiate between whether that position is part of a trajectory heading away, or coming back along the same path.
“You may have points close together in terms of distance, but in terms of time, a person’s position may actually be far from a reference point,” Lasota says.
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
It’s Only Common Sense: The Phone Is Still Mightier Than the Keyboard
10/20/2025 | Dan Beaulieu -- Column: It's Only Common SenseThere’s a dangerous myth that the keyboard is mightier than the phone, and if you blast enough cold emails, send enough LinkedIn connection requests, and fire off enough PDF proposals, customers will eventually buy from you. Let me set the record straight: Cold emails don’t close deals; conversations do.
ABS, Persona AI Partner to Bring Humanoid Robotics to Shipyards, Advancing Safety and Productivity
09/24/2025 | BUSINESS WIREA groundbreaking collaboration to develop inspection technologies for Persona AI’s humanoid robot platform that enhances productivity and safety in shipyards was formalized today with the signing of an MOU between ABS and Persona AI.
UHDI Fundamentals: UHDI Technology and Quality 5.0
09/18/2025 | Anaya Vardya, American Standard CircuitsThe convergence of ultra-high density interconnect (UHDI) technology and Quality 5.0 represents a transformative leap in electronics design and manufacturing. UHDI enables extreme miniaturization and enhanced performance, while Quality 5.0 delivers adaptive, intelligent human-centric quality systems. Together, they set the foundation for advanced electronics that are smarter, more resilient, and more sustainable.
It's Only Common Sense: Leveraging AI in Your Sales Strategy
09/01/2025 | Dan Beaulieu -- Column: It's Only Common SenseLet’s get one thing straight: AI isn’t here to replace you; it’s here to make you smarter and faster. Every time a new tool shows up, half the sales floor panics: “They’re going to automate us out of a job!” This is shouted while doomscrolling LinkedIn. Relax. Sales is still, and will always be, about human connection, trust, and delivering value. However, if you’re not using AI to your advantage, you’re handing your competitors a loaded gun and asking them to shoot first.
NVIDIA Jetson Thor Targets Advanced Humanoid Applications, Driving the Humanoid Robot Chip Market to Exceed $48M by 2028
08/26/2025 | TrendForceNVIDIA’s newly launched Jetson Thor acts as the “physical intelligence core” of humanoid robots, integrating the Blackwell GPU and 128 GB of memory to deliver 2,070 FP4 TFLOPS of AI performance—7.5 times that of its predecessor, Jetson Orin.