Tune in to Future Polarity Quantum Devices
June 13, 2019 | ICN2Estimated reading time: 2 minutes

A thorough study published in NanoLetters and led by the ICN2 Advanced Electron Nanoscopy group provides new insights on the growth mechanisms and conditions that determine the polarity of semiconductor nanostructures. Fine control of polarity can result in the design of new quantum devices.
Future applications of nanomaterials depend on our ability to understand their characteristics at the atomic scale and to modulate them at will. Polarity appears to play an important role in determining the physical and morphological properties of semiconductor nanostructures, thus researchers are studying how to control or change it.
Because of the way atoms are arranged in crystal structures, electromagnetic charges are locally separated. As a consequence, if we look at the crystal along specific directions, we can observe oppositely-charged ionic couples, which are called dumbbells because of their shape. Binary compounds—i.e. formed by two elements only—are said to have A- or B- polarity according to the dumbbell orientation. The type of polarity of these materials influences their properties, which, in turn, have a remarkable impact on the final applications.
An extensive study on polarity of semiconductor materials, conducted by Dr. María de la Mata, ICREA Prof. Jordi Arbiol and Sara Martí-Sánchez from the ICN2 Advanced Electron Nanoscopy group, in collaboration with researchers at the École Polytechnique Fédérale of Lausanne (Switzerland), the University of Bremen (Germany), the Nanyang Technological University (Singapore) and the Microsoft Quantum Lab of Delft (The Netherlands), has been recently published on NanoLetters.
Nanostructures of a wide range of semiconductor compounds have been grown in laboratory and then analyzed, using scanning transmission electron microscopy, in order to determine their polarity and compile a complete mapping. The researchers have observed that most of these materials spontaneously grow along the B-polar direction, while only a few follow either A- or B- polar directions. The latter are particularly interesting, as potentially they could offer us the possibility to predetermine their polarity during growth by intervening on some variables.
The aim of this study was indeed to pin down the factors that influence the polarity of non-planar nanostructures. Since, from the analysis of the new results and previously reported data, did not emerge any parameter that would relate the type of polarity with a specific family of binary compounds, it was concluded that the observed polarity of these nanostructures is strictly connected to the growth conditions and techniques.
Experiments have been carried out using both particle-assisted and non-particle-assisted growth techniques, which differ in the structure development starting from a core of solid material or not, and varying other parameters. Even though a complete comprehension of the dynamic and kinetics of the growing process has not been achieved yet, this study moves forward our knowledge of the mechanisms determining the growth polarity at the nanoscale. It also provides an overview of the parameters that can be tuned during the growth to influence the polarity of the resulting nanostructure. Once a fine control capability is reached, it will be possible to engineer new structures with preselected or changeable polarity with the aim to develop novel quantum devices.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.