3D-Printed Device Could Help Cut Energy Bills and Carbon
June 14, 2019 | Swansea UniversityEstimated reading time: 2 minutes

A new 3D-printed thermoelectric device, which converts heat into electric power with an efficiency factor over 50% higher than the previous best for printed materials--and is cheap to produce in bulk--has been manufactured by researchers at Swansea University’s SPECIFIC Innovation and Knowledge Centre.
Image Caption: Thermal camera image: achieving record-breaking efficiency using new printed thermoelectric material
Around one-sixth of all the energy used by industry in the UK currently ends up as waste heat, emitted into the atmosphere. Harnessing this to create electricity could be a huge step forward in helping the industry cut its energy bills and reduce its carbon footprint.
Thermoelectric materials turn differences in temperature into electric power or vice versa. They are used in fridges, power plants and even some smartwatches that are powered by body heat.
Previous research has shown that a material called tin selenide (SnSe), a compound made up of tin (Sn) and selenium (Se), has high potential as a thermoelectric material. The problem is that the methods used to manufacture it require lots of energy and are therefore expensive.
This is where the Swansea researchers’ work comes in. The technique they have developed is potentially very low-cost for industry because it enables SnSe thermoelectric generators to be produced quickly and easily in large quantities.
The team formulated tin selenide into a type of ink which they could print to test its properties. The next step was to develop a type of 3D-printing technique to produce a small thermoelectric generator made out of the ink.
The team’s experiments showed that the material gave record scores for efficiency in performance, which is measured by the “Figure of Merit” (ZT).
The Swansea team’s element achieved a ZT value (a measure of the thermoelectric generator's efficiency) of up to 1.7
The previous best ZT score for a printed thermoelectric material was 1.0
This means an efficiency rate – for turning heat into electricity - for the Swansea team’s element of around 9.5%, compared with 4.5% for the previous best
The breakthrough could be of particular benefit to industries where high temperatures are involved in the manufacturing process.
One example is steelmaking, which generates vast amounts of heat and requires immense electrical power. Recycling the heat into power, therefore, has the potential to boost energy efficiency significantly. Tata Steel is due to support a Ph.D. researcher on the team to explore the industrial application of the technology.
Printing tin selenide to turn waste heat into electrical power
The research team is from SPECIFIC Innovation and Knowledge Centre, a Swansea University-led project which develops technologies for reducing carbon emissions and demonstrates how they can be applied to buildings and industry.
Dr. Matt Carnie of Swansea University, who was lead researcher for this work, said:
“Turning waste heat into electrical power can boost energy efficiency significantly, cutting bills and reducing carbon emissions. Our findings show that printed thermoelectric materials using tin selenide are a very promising way forward.
The device we developed is the best-performing printed thermoelectric material recorded to date, with the efficiency factor improved by over 50% compared to the previous record. It is also cheap to produce in bulk compared with established manufacturing methods.
More work is needed, but already our work shows that this technique, combining efficiency and economy, could be very attractive to energy-intensive industries.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Zhen Ding Expands PCB into Semiconductors at SEMICON Taiwan 2025; Advantech Drives AI Smart Parks
09/12/2025 | Zhen DingZhen Ding Technology Holding Co., Ltd., a global leader in the PCB industry, returned to exhibit at SEMICON Taiwan 2025. Positioning itself as an industry pioneer in "PCB expanding into semiconductors," the company showcased its latest strategic layout
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Zhen Ding Technology Highlights AI-Driven Transformation of the PCB Industry at SEMICON Taiwan 2025
09/11/2025 | Zhen Ding TechnologyArtificial intelligence (AI) is expanding rapidly, with almost no field left untouched by the wave of computing power-driven transformation.
Ynvisible Celebrates Inauguration of New Production Facility in Norrköping, Sweden
09/09/2025 | Ynvisible Interactive Inc.Ynvisible Interactive Inc., a pioneer in sustainable and scalable e-paper display technology and printed electronics, is pleased to announce the successful inauguration of its new roll-to-roll production facility in Norrköping, Sweden – a city globally recognized as a center of excellence for Printed and Organic Electronics.
ASC Sunstone Circuits to Exhibit at AEMS 2025
09/09/2025 | American Standard CircuitsASC Sunstone Circuits will be exhibiting at AEMS 2025 (Anaheim Electronics and Manufacturing Show) to be held at the Anaheim Convention Center on September 24 and 25, 2025.