3D-Printed Device Could Help Cut Energy Bills and Carbon
June 14, 2019 | Swansea UniversityEstimated reading time: 2 minutes

A new 3D-printed thermoelectric device, which converts heat into electric power with an efficiency factor over 50% higher than the previous best for printed materials--and is cheap to produce in bulk--has been manufactured by researchers at Swansea University’s SPECIFIC Innovation and Knowledge Centre.
Image Caption: Thermal camera image: achieving record-breaking efficiency using new printed thermoelectric material
Around one-sixth of all the energy used by industry in the UK currently ends up as waste heat, emitted into the atmosphere. Harnessing this to create electricity could be a huge step forward in helping the industry cut its energy bills and reduce its carbon footprint.
Thermoelectric materials turn differences in temperature into electric power or vice versa. They are used in fridges, power plants and even some smartwatches that are powered by body heat.
Previous research has shown that a material called tin selenide (SnSe), a compound made up of tin (Sn) and selenium (Se), has high potential as a thermoelectric material. The problem is that the methods used to manufacture it require lots of energy and are therefore expensive.
This is where the Swansea researchers’ work comes in. The technique they have developed is potentially very low-cost for industry because it enables SnSe thermoelectric generators to be produced quickly and easily in large quantities.
The team formulated tin selenide into a type of ink which they could print to test its properties. The next step was to develop a type of 3D-printing technique to produce a small thermoelectric generator made out of the ink.
The team’s experiments showed that the material gave record scores for efficiency in performance, which is measured by the “Figure of Merit” (ZT).
The Swansea team’s element achieved a ZT value (a measure of the thermoelectric generator's efficiency) of up to 1.7
The previous best ZT score for a printed thermoelectric material was 1.0
This means an efficiency rate – for turning heat into electricity - for the Swansea team’s element of around 9.5%, compared with 4.5% for the previous best
The breakthrough could be of particular benefit to industries where high temperatures are involved in the manufacturing process.
One example is steelmaking, which generates vast amounts of heat and requires immense electrical power. Recycling the heat into power, therefore, has the potential to boost energy efficiency significantly. Tata Steel is due to support a Ph.D. researcher on the team to explore the industrial application of the technology.
Printing tin selenide to turn waste heat into electrical power
The research team is from SPECIFIC Innovation and Knowledge Centre, a Swansea University-led project which develops technologies for reducing carbon emissions and demonstrates how they can be applied to buildings and industry.
Dr. Matt Carnie of Swansea University, who was lead researcher for this work, said:
“Turning waste heat into electrical power can boost energy efficiency significantly, cutting bills and reducing carbon emissions. Our findings show that printed thermoelectric materials using tin selenide are a very promising way forward.
The device we developed is the best-performing printed thermoelectric material recorded to date, with the efficiency factor improved by over 50% compared to the previous record. It is also cheap to produce in bulk compared with established manufacturing methods.
More work is needed, but already our work shows that this technique, combining efficiency and economy, could be very attractive to energy-intensive industries.”
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
CEE PCB Appoints Markus Voeltz to Business Development Director Europe
04/02/2025 | CEE PCBCEE PCB, a leading manufacturer of printed circuit boards (PCBs) and flexible printed circuits (FPCs) with 3 production facilities in China, is expanding its presence in Europe and began providing local support in March 2025. With 25 years of experience in the industry, the company is enhancing its commitment to European customers by providing more direct collaboration for technical inquiries and advice.
Global PCB Connections: A Field Engineer’s Perspective on the Top 10 Trends to Watch
03/27/2025 | Jerome Larez -- Column: Global PCB ConnectionsAs a field application engineer for a major Chinese PCB company, I see firsthand the challenges and, more excitingly, the trends shaping our industry. Talking to engineers, designers, and procurement teams worldwide, one thing is clear: PCBs have come a long way, but we’re barely scratching the surface of what’s possible. Here are 10 trends I believe will define our industry over the next decade.
TCT Circuit Supply and Electra Polymers Announce New Strategic Partnership
03/12/2025 | Electra Polymers LtdTCT Circuit Supply (TCS) is excited to announce a new strategic partnership with Electra Polymers, a global leader in advanced specialty polymer products
IPC Releases Latest List of Standards and Revisions
03/12/2025 | IPCEach quarter, IPC releases a list of standards that are new or have been updated. To view a complete list of newly published standards and standards revisions, translations, proposed standards for ballot, final drafts for industry review, working drafts, and project approvals, visit ipc.org/status. These are the latest releases for Q1 2025.