3D-Printed Device Could Help Cut Energy Bills and Carbon
June 14, 2019 | Swansea UniversityEstimated reading time: 2 minutes
A new 3D-printed thermoelectric device, which converts heat into electric power with an efficiency factor over 50% higher than the previous best for printed materials--and is cheap to produce in bulk--has been manufactured by researchers at Swansea University’s SPECIFIC Innovation and Knowledge Centre.
Image Caption: Thermal camera image: achieving record-breaking efficiency using new printed thermoelectric material
Around one-sixth of all the energy used by industry in the UK currently ends up as waste heat, emitted into the atmosphere. Harnessing this to create electricity could be a huge step forward in helping the industry cut its energy bills and reduce its carbon footprint.
Thermoelectric materials turn differences in temperature into electric power or vice versa. They are used in fridges, power plants and even some smartwatches that are powered by body heat.
Previous research has shown that a material called tin selenide (SnSe), a compound made up of tin (Sn) and selenium (Se), has high potential as a thermoelectric material. The problem is that the methods used to manufacture it require lots of energy and are therefore expensive.
This is where the Swansea researchers’ work comes in. The technique they have developed is potentially very low-cost for industry because it enables SnSe thermoelectric generators to be produced quickly and easily in large quantities.
The team formulated tin selenide into a type of ink which they could print to test its properties. The next step was to develop a type of 3D-printing technique to produce a small thermoelectric generator made out of the ink.
The team’s experiments showed that the material gave record scores for efficiency in performance, which is measured by the “Figure of Merit” (ZT).
The Swansea team’s element achieved a ZT value (a measure of the thermoelectric generator's efficiency) of up to 1.7
The previous best ZT score for a printed thermoelectric material was 1.0
This means an efficiency rate – for turning heat into electricity - for the Swansea team’s element of around 9.5%, compared with 4.5% for the previous best
The breakthrough could be of particular benefit to industries where high temperatures are involved in the manufacturing process.
One example is steelmaking, which generates vast amounts of heat and requires immense electrical power. Recycling the heat into power, therefore, has the potential to boost energy efficiency significantly. Tata Steel is due to support a Ph.D. researcher on the team to explore the industrial application of the technology.
Printing tin selenide to turn waste heat into electrical power
The research team is from SPECIFIC Innovation and Knowledge Centre, a Swansea University-led project which develops technologies for reducing carbon emissions and demonstrates how they can be applied to buildings and industry.
Dr. Matt Carnie of Swansea University, who was lead researcher for this work, said:
“Turning waste heat into electrical power can boost energy efficiency significantly, cutting bills and reducing carbon emissions. Our findings show that printed thermoelectric materials using tin selenide are a very promising way forward.
The device we developed is the best-performing printed thermoelectric material recorded to date, with the efficiency factor improved by over 50% compared to the previous record. It is also cheap to produce in bulk compared with established manufacturing methods.
More work is needed, but already our work shows that this technique, combining efficiency and economy, could be very attractive to energy-intensive industries.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
PCBAA Names Industry Veteran Dan Weber to Board of Directors
10/31/2025 | PCBAAThe Printed Circuit Board Association of America has added Dan Weber, Executive Vice President and General Counsel at TTM Technologies, to the PCBAA board of directors.
UAE Automotive PCB Research Report 2025: A $971.16 Million Market by 2030
10/31/2025 | Globe NewswireThe UAE Automotive PCB Market was valued at USD 654.07 Million in 2024, and is projected to reach USD 971.16 Million by 2030, rising at a CAGR of 6.80%.
KLA Reports Fiscal Q1 2026 Results
10/31/2025 | PRNewswireKLA Corporation announced financial and operating results for its first quarter of fiscal year 2026, which ended on Sept. 30, 2025, and reported GAAP net income of $1.12 billion and GAAP net income per diluted share of $8.47 on revenues of $3.21 billion.
Aspocomp Secures Growth with New Financing and Share Issue
10/31/2025 | AspocompAspocomp Group Plc’s Board of Directors has on October 30, 2025, carried out a directed share issue, to certain current shareholders of the Company and to a limited number of Finnish and qualified investors in deviation of the pre-emptive subscription rights of the shareholders to ensure the successful completion of the Share Issue.
Rogers Reports Q3 2025 Results
10/30/2025 | Rogers CorporationRogers Corporation announced financial results for the third quarter of 2025.