Benchmarks to Better Catch the Sun
June 17, 2019 | KAUSTEstimated reading time: 2 minutes
Organic solar cells could soon rival traditional silicon-based photovoltaic technologies in terms of conversion efficiency. A team from the KAUST Solar Center has developed a computational approach that provides practical performance targets and useful rules to help design and develop material systems for optimal organic solar cells.
Most solar panels rely on inorganic semiconductors to harvest and convert sunlight into electricity. Organic photovoltaic materials, however, have emerged as lightweight, inexpensive alternatives. These materials are easy to tune and process at large scales, which makes them appealing for industrial production and commercialization.
State-of-the-art organic solar cells rely on bulk heterojunctions, which combine light-responsive electron donor and acceptor materials to form an active layer. Exposure to sunlight creates an excited state that generates pairs of electrons and positively charged holes, which are responsible for electric current. These charge carriers need to be held apart, which relies on the electron donor and acceptor materials.
Fullerene-based acceptor materials have yielded organic solar cells with unparalleled conversion efficiencies for almost two decades. Yet these materials have several drawbacks, such as high voltage losses and poor absorption of the solar spectrum, that have restricted efficiencies to 11 percent. Meanwhile, nonfullerene alternatives have recently outperformed all existing fullerene-based cells, however, a lack of understanding of the elements that control the conversion efficiency of these cells has limited further enhancement in cell performance.
Thomas Anthopoulos and coworkers used computer simulations to assess the influence of several key parameters, including the absorption and thickness of the active layer, charge-carrier mobility and charge recombination rate, on the performance of nonfullerene organic solar cells.
Postdoctoral fellow Yuliar Firdaus explains that the simulations explicitly treat the effect of these parameters. Therefore, the calculated cell efficiency limit is similar to the efficiency that nonfullerene-based cells can realistically achieve with continued material improvement.
Yuliar Firdaus and colleagues have developed a computational approach to predict efficiency limits and propose design rules for nonfullerene organic solar cells.
The researchers found that nonfullerene-based cells could realize efficiencies exceeding 18 percent, even with the readily achievable charge mobility in existing material systems. Efficiencies could even surpass 20 percent with high and balanced electron and hole mobilities associated with low recombination rate constants. “I am confident that the nonfullerene-based cells will soon reach these calculated efficiency limits,” Firdaus says.
“We are presently working on different fronts, such as developing new interfacial layers and dopant formulations, while maintaining the same primary goal: pushing the efficiency of organic solar cells closer to the practical limits identified in our study,” Firdaus says.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).