A New Approach to Modeling Tumors
June 18, 2019 | EPFLEstimated reading time: 1 minute

When researchers develop new therapies, such as for cancer, they need to be able to test them on models that closely resemble human tissue. Cell aggregates—groups of cells created in controlled laboratory conditions—represent a promising step in that direction.
The Microsystems Laboratory 4 at EPFL's School of Engineering, working in collaboration with the Ampère Laboratory at the University of Lyon, has developed a device the size of a microchip that can be used to create cell aggregates. This device employs electric fields to precisely control both the number and behavior of the cells used to form the aggregates. This study was recently published in the journal Electrophoresis.
“The utility of these aggregates can be seen in the field of electrochemotherapy, for example,” says EPFL post-doctoral researcher Jonathan Cottet, lead author of the study. In electrochemotherapy, electric fields applied to a tumor render the cell membranes permeable enough for cancer drugs to be introduced into the individual cancer cells. “But to improve and standardize this method, we need to be able to carry out tests on models that closely resemble tumors—and such models simply don't exist,” explains Dr. Cottet. “The only tests we can do at this point are at the cellular level.”
The newly developed device consists of microchannels and electrodes positioned on a plate the size of a microchip. A liquid, which in this study contained human embryonic kidney cells, flows through the microchannels. When the electric fields are turned on, the cells are “trapped” in the center of the device and form an aggregate.
“We use a technique called dielectrophoresis to trap the cells,” says Dr. Cottet. “This involves applying electric fields that attract or repel the cells depending on the properties of both the cells and the liquid.” Throughout the process, the researchers control the precise number and type of cells that circulate, selecting the ones they want to form the aggregate. Once created, the aggregate can be released without coming apart. The device was manufactured in a clean room at EPFL and is reproducible.
Cell aggregates, because they are considered permanent, are an important step towards creating organoids of a desired size and composition. Organoids are comprised of several cell types and reproduce the functions of an organ.
Suggested Items
Green Power for the Future: AT&S Revolutionizes e-mobility
07/02/2025 | AT&SThe dream of an electric car that is fully charged within ten minutes and then delivers a range of 1000 kilometers is no longer unrealistic. Modern batteries, fast charging stations and efficient semiconductor-based electronics to manage high voltages and currents have ensured that electric cars have become increasingly competitive in terms of travel comfort in recent years.
Wolfspeed Stock Soars After Filing for Chapter 11 Bankruptcy
07/01/2025 | I-Connect007 Editorial TeamOn July 1, Wolfspeed shares doubled following the company’s announcement on June 30 that it had filed for Chapter 11 bankruptcy protection.
Crusoe Announces Strategic European Expansion with First Data Center in Norway, Partnering with Polar
06/19/2025 | Globe NewswireCrusoe, the industry’s first vertically integrated AI infrastructure provider, announced a strategic partnership with Polar to establish Crusoe’s first data center presence in mainland Europe.
Happy’s Tech Talk #39: PCBs Replace Motor Windings
06/12/2025 | Happy Holden -- Column: Happy’s Tech TalkThe age of electric vehicles has arrived. If we can improve energy storage, lower the price tag of batteries, andmake them work at lower temperatures, EVs may become our favorite mode of transportation. Certainly, the motors are going through a massive change. Figure 1 shows a typical EV motor.
Indium Joins Virginia Tech Center for Power Electronics Systems Industry Consortium
06/03/2025 | Indium CorporationIndium Corporation®, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, has joined Virginia Tech’s Center for Power Electronics Systems (CPES), an industry consortium that supports power electronics initiatives to reduce energy use while growing capability.