Hidden Chargers
June 20, 2019 | University of TokyoEstimated reading time: 2 minutes

Researchers from the University of Tokyo led by doctoral student Takuya Sasatani, Disney Research and the University of Michigan in the U.S., created and demonstrated a room-sized device which uses magnetic fields to charge compatible devices inside it.
“The internet of things is coming,” says Sasatani. “People will soon find their environments populated by small sensors and other devices which need power and communication. We have a safe and elegant solution for this, and it too could help technology become more invisible.”
The roomwide wireless power transfer system can simultaneously charge multiple devices—or nodes—within the confines of a room. Metal sheets and electrical components are embedded within a column in the center of the room and the structure of the room itself. As the functional elements of the system are integrated into a room, this approach is most suited for inclusion in new buildings, although the research team also explore ways to retrofit existing environments.
For the system to work, researchers exploit a phenomenon called quasistatic cavity resonance. Here, oscillating magnetic fields confined to a certain volume induce the flow of charge in devices possessing specially designed coils. The magnetic field swirls around the room and the electric field is confined to the components embedded within the central pole.
“Safety is our prime concern and we will make sure that future deployments of our system meet all governmental regulations for health and safety. We use magnetic fields well within safety limits for human proximity and the electric field is isolated by capacitors in the central column,” continues Sasatani. “Conversely, the presence of people should not affect power transfer efficiency. It even plays well with Wi-Fi, though our system provides an alternative communication link with small power consumption. This can drastically extend battery life of the numerous low-power devices installed in our surroundings.”
An essential feature of devices such as sensors is they communicate their data periodically. The researchers engineered a way for compatible devices to send and receive data through the same mechanism which powers them. Compatible devices communicate with the central system at several kilobits per second by modulating a power signal in a method analogous to how AM radio works. While not yet suitable to stream videos, it’s enough to communicate many kinds of ambient data that sensors are likely to collect.
“The combined power and data capacity of our system potentially makes it suitable for environments such as hospitals, greenhouses, labs, event spaces or your home,” concludes Sasatani. “We will continue to innovate and improve power transfer loads and communication bandwidth, while ensuring compatible devices will be cheap and easy to manufacture.”
As well as being cheap to manufacture, the system should also prove inexpensive to run, using about 10 watts of power, equivalent to an efficient LED lightbulb.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
AV Switchblade 600 Loitering Munition System Achieves Pivotal Milestone with First-Ever Air Launch from MQ-9A
09/12/2025 | BUSINESS WIREAeroVironment, Inc. (AV) a global leader in intelligent, multi-domain autonomous systems, announced its Switchblade 600 loitering munition system (LMS) has achieved a significant milestone with its first-ever air launch from an MQ-9A Reaper Unmanned Aircraft System (UAS).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.