What Is an Atomic Clock?
June 20, 2019 | NASAEstimated reading time: 5 minutes
The energy required to make electrons change orbits is unique in each element and consistent throughout the universe for all atoms of a given element. For instance, the frequency necessary to make electrons in a carbon atom change energy levels is the same for every carbon atom in the universe. The Deep Space Atomic Clock uses mercury atoms; a different frequency is necessary to make those electrons change levels, and that frequency will be consistent for all mercury atoms.
"The fact that the energy difference between these orbits is such a precise and stable value is really the key ingredient for atomic clocks," said Eric Burt, an atomic clock physicist at JPL. "It's the reason atomic clocks can reach a performance level beyond mechanical clocks."
Being able to measure this unchangeable frequency in a particular atom offers science a universal, standardized measurement of time. ("Frequency" refers to the number of waves that pass a particular point in space in a given unit of time. So, by counting waves, it's possible to measure time.) In fact, the official measurement of the length of a second is determined by the frequency needed to make electrons jump between two specific energy levels in a cesium atom.
In an atomic clock, the frequency of the quartz oscillator is transformed into a frequency that is applied to a collection of atoms. If the derived frequency is correct, it will cause many electrons in the atoms to change energy levels. If the frequency is incorrect, far fewer electrons will jump. This will determine if the quartz oscillator is off-frequency and by how much. A "correction" determined by the atoms can then be applied to the quartz oscillator to steer it back to the correct frequency. This type of correction is calculated and applied to the quartz oscillator every few seconds in the Deep Space Atomic Clock.
What's unique about the Deep Space Atomic Clock?
Atomic clocks are used onboard GPS satellites that orbit the Earth, but even they must be sent updates two times per day to correct the clocks' natural drift. Those updates come from more stable atomic clocks on the ground that are large (often the size of a refrigerator) and not designed to survive the physical demands of going to space.
Up to 50 times more stable than the atomic clocks on GPS satellites, NASA's Deep Space Atomic Clock is intended to be the most stable atomic clock ever flown in space. It achieves this stability by using mercury ions.
Ions are atoms that have a net electric charge, rather than being electrically neutral. In any atomic clock, the atoms are contained in a vacuum chamber, and in some of those clocks, atoms interact with the vacuum chamber walls. Environmental changes such as temperature will then cause similar changes in the atoms and lead to frequency errors. Many atomic clocks use neutral atoms, but because the mercury ions have an electric charge, they can be contained in an electromagnetic "trap" to prevent this interaction from happening, allowing the Deep Space Atomic Clock to achieve a new level of precision.
For missions going to distant destinations like Mars or other planets, such precision makes autonomous navigation possible with minimal communication to and from Earth — a huge improvement in how spacecraft are currently navigated.
Page 2 of 2Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Ferric Launches New Integrated Voltage Regulator for AI and High-Performance Processors
08/27/2025 | BUSINESS WIREFe1766 delivers an unprecedented 160 A in the industry’s smallest IVR footprint, redefining chip-level and system-level power delivery for the AI era.
Tigo Energy Initiates ‘Made in the USA’ Manufacturing Partnership With EG4 Electronics Share
08/27/2025 | BUSINESS WIRETigo Energy, Inc announced a manufacturing and marketing partnership with EG4 Electronics to produce Tigo optimized inverters and Module Level Power Electronics (MLPE) together with EG4 solar inverters in the United States of America.
SINBON Celebrates Opening of New US Manufacturing Facility
08/21/2025 | PRNewswireLeading electronics system integrator SINBON Electronics Co., Ltd. held an opening ceremony on August 18 to celebrate its new 59,000-square-foot facility in Clayton, Ohio.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.
Driving the New Era of AI and IoT with Powercast's One-Stop Shop for Wireless Power Solutions
08/18/2025 | PRNewswireAs AI and IoT drive explosive growth, Powercast is redefining how industries power critical infrastructure. By eliminating disposable batteries through long-range RF wireless technology, Powercast delivers cost-efficient, scalable, and sustainable energy solutions tailored to meet the demands of our increasingly connected world.