New Mechanism Allows Lower Energy Requirement for OLED Displays
June 21, 2019 | RIKENEstimated reading time: 2 minutes
Scientists from RIKEN and the University of California San Diego, in collaboration with international partners have found a way to significantly reduce the amount of energy required by organic light emitting diodes (OLEDs). OLEDs have attracted attention as potential replacements for liquid crystal diodes, since they offer advantages such as being flexible, thin, and not requiring backlighting.
The group achieved the advance, published in Nature, by developing a new way to manipulate the “excitons”—pairs of electrons and holes—that are key to the transport of electrons within OLEDs. Essentially, current passing through the device creates such pairs, and when they change to a lower energy level, and emit visible light in the process. Normally, the excitons in OLEDs arise in two patterns, with the spins being either the same or opposite, and the ones with same spins—known technically as triplet excitons—are three times more common. However, the singlets, which are created along with the triplets, require more energy, and though they can be converted into triplets it still means that the device as a whole requires the energy to create them in the first place.
In the current work, the group found a way to lower the voltage so that only triplets are formed. The work began with fundamental research to understand the basic physics behind the creation of excitons using precise single-molecule electroluminescence measurements using a scanning tunneling microscope (STM) combined with an optical detection system. They prepared a model system based on an isolated molecule of 3, 4, 9, 10-perylenetetracarboxylicdianhydride (PTCDA), an organic semiconductor, adsorbed on a metal-supported ultrathin insulating film. They used a special technique to impart a negative charge to the molecule. Then, they used the current from an STM (scanning tunneling microscope) to induce luminescence in the molecule, and monitored what type of exciton was created based on the emission spectrum. The measurements showed that at low voltage, only triplets were formed. Theoretical calculations by Kuniyuki Miwa and Michael Galperin at UC San Diego confirmed the experimental results and substantiated the mechanism.
“We believe,” says Kensuke Kimura of the RIKEN Cluster for Pioneering Research, “that we were able to do this thanks to a previously unknown mechanism, where electrons are selectively removed from the charged molecule depending on their spin state.”
“It was very exciting to discover this new mechanism,” says Yousoo Kim, leader of the Surface and Interface Science Laboratory in the RIKEN CPR, “We believe that these findings could become a general working principle for novel OLEDs with low operating voltage.”
The work was done by researchers from RIKEN, the University of California San Diego, the University of Tokyo, and the Institute for Molecular Science.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
The Shaughnessy Report: Winning the Signal Integrity Battle
09/09/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen I first started covering this industry in 1999, signal integrity was the hip new thing in PCB design. Conference classes on signal integrity were packed to the walls, and an SI article was guaranteed to get a lot of reads.
Standard of Friendship: Debbie McDade and Symon Franklin Went From Classmates to Colleagues
08/27/2025 | Debbie McDade, Advanced Rework Technology Ltd.As a fairly new IPC Master Trainer, I nervously attended my first IPC committee meeting in 2002 in New Orleans—a 4,600-mile trip from my home in the UK—for the IPC-610 Task Group. With more than 250 members, it was the largest IPC committee at that time.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.
Insulectro Facilitates Fabricator Access to EMC Mass Lam Capabilities
07/30/2025 | InsulectroInsulectro, the largest distributor of materials used in the manufacturing of printed circuit boards and printed electronics, announces a new service - a system to help our customers to access EMC's well established mass lam offerings. Long a leader in mass lam manufacturing, EMC is the exclusive supplier in Insulectro's laminate and pre preg portfolio.
American Made Advocacy: A Growing Presence in Washington in Turbulent Times
07/29/2025 | Shane Whiteside -- Column: American Made AdvocacyLast month, PCBAA held its fourth annual meeting in Washington, D.C. It was our largest gathering to date and included speakers from the House and Senate, the Department of Commerce, and OEMs Lockheed Martin, RTX, and Northrop Grumman. We also spent a day on Capitol Hill educating lawmakers and their staff about the importance of a secure domestic microelectronics supply chain.