NIST Team Supersizes ‘Quantum Squeezing’ to Measure Ultrasmall Motion
June 24, 2019 | NISTEstimated reading time: 4 minutes
Physicists at the National Institute of Standards and Technology (NIST) have harnessed the phenomenon of “quantum squeezing” to amplify and measure trillionths-of-a-meter motions of a lone trapped magnesium ion (electrically charged atom).
Image Caption: Diagram of NIST’s ion trap used for reversible “quantum squeezing” to amplify and measure ion motion. The ion (white ball) is confined 30 micrometers above the trap surface by voltages applied to the eight gold electrodes and the two red electrodes. Squeezing—which reduces the uncertainty of motion measurements—is achieved by applying a specific signal to the red electrodes. The ion is moved by applying another type of signal to one of the gold electrodes. Then the squeezing is reversed, and the blue electrodes generate magnetic fields used to decode the amplified motion measurements. Credit: S. Burd/NIST
NIST’s rapid, reversible squeezing method could enhance sensing of extremely weak electric fields in surface science applications, for example, or detect absorption of very slight amounts of light in devices such as atomic clocks. The technique could also speed up operations in a quantum computer.
“By using squeezing, we can measure with greater sensitivity than could be achieved without quantum effects,” lead author Shaun Burd said.
“We demonstrate one of the highest levels of quantum squeezing ever reported and use it to amplify small mechanical motions,” NIST physicist Daniel Slichter said. “We are 7.3 times more sensitive to these motions than would be possible without the use of this technique.”
Although squeezing an orange might make a juicy mess, quantum squeezing is a very precise process, which moves measurement uncertainty from one place to another.
Imagine you are holding a long balloon, and the air inside it represents uncertainty. Quantum squeezing is like pinching the balloon on one end to push air into the other end. You move uncertainty from a place where you want more precise measurements, to another place, where you can live with less precision, while keeping the total uncertainty of the system the same.
In the case of the magnesium ion, measurements of its motion are normally limited by so-called quantum fluctuations in the ion’s position and momentum, which occur all the time, even when the ion has the lowest possible energy. Squeezing manipulates these fluctuations, for example by pushing uncertainty from the position to the momentum when improved position sensitivity is desired.
In NIST’s method, a single ion is held in space 30 micrometers (millionths of a meter) above a flat sapphire chip covered with gold electrodes used to trap and control the ion. Laser and microwave pulses are applied to calm the ion’s electrons and motion to their lowest-energy states. The motion is then squeezed by wiggling the voltage on certain electrodes at twice the natural frequency of the ion’s back-and-forth motion. This process lasts only a few microseconds.
After the squeezing, a small, oscillating electric field “test signal” is applied to the ion to make it move a little bit in three-dimensional space. To be amplified, this extra motion needs to be “in sync” with the squeezing.
Finally, the squeezing step is repeated, but now with the electrode voltages exactly out of sync with the original squeezing voltages. This out-of-sync squeezing reverses the initial squeezing; however, at the same time it amplifies the small motion caused by the test signal. When this step is complete, the uncertainty in the ion motion is back to its original value, but the back-and-forth motion of the ion is larger than if the test signal had been applied without any of the squeezing steps.
To obtain the results, an oscillating magnetic field is applied to map or encode the ion’s motion onto its electronic “spin” state, which is then measured by shining a laser on the ion and observing whether it fluoresces.
Using a test signal allows the NIST researchers to measure how much amplification their technique provides. In a real sensing application, the test signal would be replaced by the actual signal to be amplified and measured.
The NIST method can amplify and quickly measure ion motions of just 50 picometers (trillionths of a meter), which is about one-tenth the size of the smallest atom (hydrogen) and about one-hundredth the size of the unsqueezed quantum fluctuations. Even smaller motions can be measured by repeating the experiment more times and averaging the results. The squeezing-based amplification technique allows motions of a given size to be sensed with 53 times fewer measurements than would otherwise be needed.
Squeezing has previously been achieved in a variety of physical systems, including ions, but the NIST result represents one of the largest squeezing-based sensing enhancements ever reported.
NIST’s new squeezing method can boost measurement sensitivity in quantum sensors and could be used to more rapidly create entanglement, which links properties of quantum particles, thus speeding up quantum simulation and quantum computing operations. The methods might also be used to generate exotic motional states. The amplification method is applicable to many other vibrating mechanical objects and other charged particles such as electrons.
This work was supported in part by the Army Research Office and the Office of Naval Research.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
TTCI Brings Hands-On Test Engineering and IPC Training Expertise to PCB Carolina 2025
10/31/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB Carolina on Wednesday, November 12, 2025, at the McKimmon Center at NC State University in Raleigh, North Carolina. Attendees can visit Table 4 to say hello to Bert Horner and Bill Graver, and learn more about their test engineering services and technical training programs.
GEN3 Systems to Showcase Advanced Reliability Test Solutions at productronica 2025 in Munich
10/29/2025 | Gen3 SystemsGEN3 a leader in innovative reliability test solutions, is excited to announce its participation at productronica 2025, the world’s premier trade fair for electronics development and production.
Unlocking the Promise of AI in Electronics Manufacturing
10/29/2025 | Shobhit Agrawal, Keysight TechnologiesThe electronics manufacturing industry is rapidly evolving as more complicated products are introduced in the production lines, which require technological advancements even in the production processes. The requirements for production that is efficient, product quality that is greater, and product life cycles that are shorter are more crucial than ever before. In the electronic device life cycle, from design to maintenance, test phases have a significant impact on the economy of the company. Test processes are closely linked to the production volume and impacted by the complexity of the product. For businesses to maintain their competitive edge, they need to adopt innovative solutions and redefine processes.
New Episode of Voices of the Industry Podcast Explores Breakthroughs in Test and Inspection
10/22/2025 | I-Connect007In this episode of Voices of the Industry, “Testing Innovation: Advances in Test, Inspection & Failure Analysis,” host Nolan Johnson speaks with Rob Boguski, president of Datest. Together, they explore the expanding world of circuit testing, inspection, and failure analysis, areas that are experiencing a surge in technological capability and sophistication. As Johnson and Boguski discuss, today’s test companies are performing analyses and precision methods that would have seemed impossible just a decade ago.
HT Global Circuits Adds Two atg Luther & Maelzer Flying Probe Test Systems
10/15/2025 | atg Luther & Maelzer GmbHAtg Luther & Maelzer GmbH, a leading supplier of electrical testing solutions for the PCB industry, and IEC USA, a distributor of consumables, equipment, and services in the North American PCB market, confirm the order for high-speed bare board testing technology.