‘Sandwich’ Structure Key to Thin LSMO Films Retaining Magnetic Properties
June 27, 2019 | NC State UniversityEstimated reading time: 2 minutes

Researchers at North Carolina State University have found that the oxide ceramic material lanthanum strontium manganite (LSMO) retains its magnetic properties in atomically thin layers if it is “sandwiched” between two layers of a different ceramic oxide, lanthanum strontium chromium oxide (LSCO). The findings have implications for future use of LSMO in spintronic-based computing and storage devices.
In its bulk form LSMO has both magnetic and metallic properties. The conductivity of the material can be altered by changing its magnetic field, which makes LSMO appealing for use as a switch in spintronic devices. However, when the material gets to a certain thinness — between five and 10 atomic layers — it loses these properties.
Divine Kumah, assistant professor of physics at NC State and corresponding author of a paper describing the work, wanted to know why LSMO loses its magnetic properties at a particular thinness, and to find a way to make LSMO magnetic in thin form.
Kumah, with colleagues and graduate students from NC State, first grew thin films of LSMO on strontium titanate — a non-magnetic substrate commonly used as a neutral scaffold. The team grew films ranging from two to 10 atomic layers thick and tested them for magnetic properties.
Next, the team utilized the synchrotron light source at Argonne National Laboratory so that they could get a three-dimensional view of the arrangement of the atoms within the thin layers of LSMO. They found that at extreme thinness, the oxygen and manganese atoms moved slightly out of alignment on the surface of the material, effectively switching off its magnetism.
“At about five atomic layers we saw distortions on the surface of the layer and at the bottom interface with the scaffold,” Kumah says. “The oxygen and manganese atoms rearrange themselves. Magnetism and electrical conductivity in LSMO are related to how these two atoms bond, so if there are polar distortions in the film where they move up and down, the bonds stretch out, electrons can’t move through the material effectively and magnetism is switched off.”
The team noted that these distortions started at the top of the film and extended approximately three layers below surface.
“We found that the distortions occur because the crystal structure creates an electric field at the surface,” Kumah says. “The oxygen and manganese atoms move in order to cancel the electric field. Our challenge was to grow something at the interfaces that is compatible with LSMO structurally but that is also insulating — so that we remove the electric field, stop the movement of the oxygen and manganese atoms and retain magnetic properties.”
The researchers found that by using two layers of LSCO on either side of the LSMO, the LSMO could retain its magnetic properties at two atomic layers.
“It is like a sandwich — LSCO is the bread and LSMO is the meat,” Kumah says. “You can use fewer than five layers of LSMO in this arrangement without any atomic displacement. Hopefully our work has shown that these materials can be thin enough to be useful in spintronics devices.”
Suggested Items
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.