Confirmation of Old Theory Leads to New Breakthrough in Superconductor Science
July 1, 2019 | Argonne National LaboratoryEstimated reading time: 5 minutes

Phase transitions occur when a substance changes from a solid, liquid or gaseous state to a different state — like ice melting or vapor condensing. During these phase transitions, there is a point at which the system can display properties of both states of matter simultaneously. A similar effect occurs when normal metals transition into superconductors — characteristics fluctuate and properties expected to belong to one state carry into the other.
Image Caption: Graphic showing van der Waals BSCCO device. (a) Optical image of Hall bar device, (b) Cross-sectional view of a typical device in scanning TEM. Columns of atoms are visible as dark spots; black arrows point to bismuth oxide layers (darkest spots), while gray arrows show their extrapolated positions. (c) Resistivity as a function of temperature for devices of a different thickness.
Scientists at Harvard have developed a bismuth-based, two-dimensional superconductor that is only one nanometer thick. By studying fluctuations in this ultra-thin material as it transitions into superconductivity, the scientists gained insight into the processes that drive superconductivity more generally. Because they can carry electric currents with near-zero resistance, as they are improved, superconducting materials will have applications in virtually any technology that uses electricity.
The Harvard scientists used the new technology to experimentally confirm a 23-year-old theory of superconductors developed by scientist Valerii Vinokur from the U.S. Department of Energy’s (DOE) Argonne National Laboratory.
“Sometimes you discover something new and exotic, but sometimes you just confirm that you do, after all, understand the behavior of the every-day thing that is right in front of you.” — Valerii Vinokur, Argonne Distinguished Fellow, Materials Science division.
One phenomenon of interest to scientists is the complete reversal of the well-studied Hall effect when materials transition into superconductors. When a normal, non-superconducting material carries an applied current and is subjected to a magnetic field, a voltage is induced across the material. This normal Hall effect has the voltage pointing in a specific direction depending on the orientation of the field and current.
Interestingly, when materials become superconductors, the sign of the Hall voltage reverses. The “positive” end of the material becomes the “negative.” This is a well-known phenomenon. But while the Hall effect has long been a major tool that scientists use to study the types of electronic properties that make a material a good superconductor, the cause of this reverse Hall effect has remained mysterious to scientists for decades, especially in regard to high-temperature superconductors for which the effect is stronger.
In 1996, theorist Vinokur, an Argonne Distinguished Fellow, and his colleagues presented a comprehensive description of this effect (and more) in high-temperature superconductors. The theory took into account all of the driving forces involved, and it included so many variables that testing it experimentally seemed unrealistic — until now.
“We believed we had really solved these problems,” said Vinokur, “but the formulas felt useless at the time, because they included many parameters that were difficult to compare with experiments using the technology that existed then.”
Scientists knew that the reverse Hall effect results from magnetic vortices that crop up in the superconducting material placed in the magnetic field. Vortices are points of singularity in the liquid of superconducting electrons — Cooper pairs — around which Cooper pairs flow, creating circulating superconducting micro-currents that bring novel features in the physics of the Hall effect in the material.
Normally, distribution of electrons in the material causes the Hall voltage, but in superconductors, vortices move under the applied current, which creates electronic pressure differences that are mathematically similar to those that keep an airplane in flight. These pressure differences change the course of the applied current like the wings of an airplane change the course of the air passing by, uplifting the plane. The vortex motion redistributes electrons differently, changing the direction of the Hall voltage to the opposite of the usual purely electronic Hall voltage.
The 1996 theory quantitatively described the effects of these vortices, which had only been qualitatively understood. Now, with a novel material that took Harvard scientists five years to develop, the theory was tested and confirmed.
The bismuth-based thin material is virtually only one atomic layer thick, making it essentially two-dimensional. It is one of the only of its kind, a thin-film high-temperature superconductor; production of the material alone is a technological breakthrough in superconductor science.
“By reducing the dimensions from three to two, the fluctuations of the properties in the material become much more apparent and easier to study,” said Philip Kim, a lead scientist in the Harvard group. “We created an extreme form of the material that allowed us to quantitatively address the 1996 theory.”
Page 1 of 2
Suggested Items
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.