Advanced Method for Analyzing Graphene Oxide
July 1, 2019 | Tomsk Polytechnic UniversityEstimated reading time: 2 minutes
Researchers from Tomsk Polytechnic University have developed a reliable method for analyzing the reduction of graphene oxide microregions. In contrast to earlier proposed methods based on Raman spectroscopy, this advanced method provides more exact data about unique properties of certain areas of the material of only a few micrometers in size.
Image Caption: Raman spectrum of graphene oxide with the designation of peaks, and the scheme of the experiment
The international research team led by Professor Raul Rodrigez from TPU School of Chemistry & Applied Biomedical Sciences and Professor Evgeniya Sheremet from TPU School of High Energy Physics is developing new field - optical nanospectroscopy, as well as plasmon and sensor materials development for biomedicine and electronics.
According to Professor Sheremet, the study of unique physical-chemical properties of graphene oxide is still relevant despite many studies in the area. Graphene oxide has a graphene structure with attached oxygen-containing functional groups. The number of these groups strongly influences the properties of the material.
"The fewer oxygen groups remain on the surface of graphene oxide, the higher its reduction. This criterion influences whether the material will be hydrophilic and a dielectric due to polar groups, or it will be more similar to graphene, i.e. hydrophobic and a conductor," says TPU professor.
There are several ways to evaluate the reduction, for example, X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy. However, these methods work only with large areas of materials, whereas microregions are required to process graphene oxide to be applied in electronics. Therefore, TPU scientists investigate laser-reduced graphene oxide, the size of reduced areas can be less than several micrometers.
‘We were looking for a method that allowed us to obtain at least micron resolution, such as Raman spectroscopy,’ explains Evgeniya Sheremet.
Reduced graphene oxide (rGO) was obtained under different laser powers in the range from 0.1 to 10 mW. Then, the researchers investigated reduced areas by using Raman spectrometer and a joint current sensing atomic force microscopy (CSAFM). Raman spectroscopy is widely used for the study of many properties of carbon materials, especially graphene, including mechanical stress, the number of defects, and the type of alloying. However, existing approaches suitable for graphene do not work for graphene oxide since its lattice has a greater number of defects. The analytical methods lose sensitivity in this case.
‘Usually, first-order peaks are analyzed in carbon materials but for graphene oxide, they do not provide reliable results. Therefore, we analyzed the areas of high frequencies and found a clear pattern. The relative intensity of second-order peaks decreases with increasing the extent of reduction. Notably, there is a strong correlation with the conductivity of the material, i.e. we can use Raman signal to assess the reduction of graphene oxide. This is a more reliable method than the earlier proposed ones,’ emphasizes the professor.
Moreover, using nanospectroscopy approaches, this technique can be used for analyzing nanoscale areas.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).