Advanced Method for Analyzing Graphene Oxide
July 1, 2019 | Tomsk Polytechnic UniversityEstimated reading time: 2 minutes

Researchers from Tomsk Polytechnic University have developed a reliable method for analyzing the reduction of graphene oxide microregions. In contrast to earlier proposed methods based on Raman spectroscopy, this advanced method provides more exact data about unique properties of certain areas of the material of only a few micrometers in size.
Image Caption: Raman spectrum of graphene oxide with the designation of peaks, and the scheme of the experiment
The international research team led by Professor Raul Rodrigez from TPU School of Chemistry & Applied Biomedical Sciences and Professor Evgeniya Sheremet from TPU School of High Energy Physics is developing new field - optical nanospectroscopy, as well as plasmon and sensor materials development for biomedicine and electronics.
According to Professor Sheremet, the study of unique physical-chemical properties of graphene oxide is still relevant despite many studies in the area. Graphene oxide has a graphene structure with attached oxygen-containing functional groups. The number of these groups strongly influences the properties of the material.
"The fewer oxygen groups remain on the surface of graphene oxide, the higher its reduction. This criterion influences whether the material will be hydrophilic and a dielectric due to polar groups, or it will be more similar to graphene, i.e. hydrophobic and a conductor," says TPU professor.
There are several ways to evaluate the reduction, for example, X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy. However, these methods work only with large areas of materials, whereas microregions are required to process graphene oxide to be applied in electronics. Therefore, TPU scientists investigate laser-reduced graphene oxide, the size of reduced areas can be less than several micrometers.
‘We were looking for a method that allowed us to obtain at least micron resolution, such as Raman spectroscopy,’ explains Evgeniya Sheremet.
Reduced graphene oxide (rGO) was obtained under different laser powers in the range from 0.1 to 10 mW. Then, the researchers investigated reduced areas by using Raman spectrometer and a joint current sensing atomic force microscopy (CSAFM). Raman spectroscopy is widely used for the study of many properties of carbon materials, especially graphene, including mechanical stress, the number of defects, and the type of alloying. However, existing approaches suitable for graphene do not work for graphene oxide since its lattice has a greater number of defects. The analytical methods lose sensitivity in this case.
‘Usually, first-order peaks are analyzed in carbon materials but for graphene oxide, they do not provide reliable results. Therefore, we analyzed the areas of high frequencies and found a clear pattern. The relative intensity of second-order peaks decreases with increasing the extent of reduction. Notably, there is a strong correlation with the conductivity of the material, i.e. we can use Raman signal to assess the reduction of graphene oxide. This is a more reliable method than the earlier proposed ones,’ emphasizes the professor.
Moreover, using nanospectroscopy approaches, this technique can be used for analyzing nanoscale areas.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.