Energy-Saving Nano-Surfaces Inspired by Nature
July 5, 2019 | European CommissionEstimated reading time: 1 minute
LiNaBioFluid researchers used electron microscopes to study desert-dwelling horned lizards, which survive in arid conditions by collecting dew through their skin, and flat bark bugs, which change colour to camouflage themselves from predators when they get wet. Close inspection showed that the creatures possess different micro and nanoscale fluid-transporting structures, forming miniscule surface patterns that can drive liquids in a specific direction with the greatest possible efficiency.
By replicating those same organic patterns on steel, titanium and silicon using precision lasers—a process known as biomimicry—the LiNaBioFluid team was able to demonstrate significant improvements in controlled fluid transport. Tests showed that this biomimetic breakthrough reduced the coefficient of friction by 50% in machine components, such as steel shafts lubricated with engine oil, and could enable the production of much more robust and efficient slide bearings for many mechanical applications.
Faster and more effective lubrication means less friction and resistance, reducing energy use and CO2 emissions, while minimising the wear and tear that shortens the lifespan of machines.
More efficient machinery
‘By working together with biologists and laser experts, the project developed a radical new line of biomimicry technology. The results could be very useful for solving everyday engineering problems that would transform the energy efficiency of millions of machines,’ says project coordinator Emmanuel Stratakis of the Foundation for Research and Technology Hellas in Greece.
The researchers also identified medical uses, including laser-engineered titanium implants with biomimetic surface microstructures wetted by blood and body fluids to prevent overgrowth of tissue and cells. This has the potential to reduce the side effects of hip replacement surgery or enable novel implants to treat cardiovascular disease, a discovery now being explored further in the follow-on FET Innovation Launchpad Project CellFreeImplant.
‘We are also looking at other ways in which these new types of biomimetic and nanoscale structures could be used, for example in underwater applications, in high-power device cooling or to separate water and oil,’ Stratakis says. ‘Furthermore, we are studying the unexpected discovery of anti-reflection properties of bio-inspired laser-induced nanostructures. This finding is being patented and will be investigated further in LaBionicS, a second follow-on FET Innovation Launchpad Project.’
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Polar Instruments Announces Additive Transmission Line Support for Si9000e
08/20/2025 | Polar InstrumentsTransmission lines embedded into the PCB surface are a feature of UHDI constructions. The 2025 fall release of Polar's Si9000e PCB impedance & insertion loss transmission line field solver incorporates eight new single ended, differential and coplanar transmission line structures.
Henniker Plasma Launches Stratus Turnkey Plasma Manufacturing Cell
08/13/2025 | Henniker PlasmaHenniker Plasma, a leading manufacturer of plasma treatment systems, proudly announces the launch of its Stratus Plasma Manufacturing Cell range — a fully integrated, turnkey solution that combines advanced atmospheric plasma surface treatment with robotic automation.
Trouble in Your Tank: Metallizing Flexible Circuit Materials—Mitigating Deposit Stress
08/04/2025 | Michael Carano -- Column: Trouble in Your TankMetallizing materials, such as polyimide used for flexible circuitry and high-reliability multilayer printed wiring boards, provide a significant challenge for process engineers. Conventional electroless copper systems often require pre-treatments with hazardous chemicals or have a small process window to achieve uniform coverage without blistering. It all boils down to enhancing the adhesion of the thin film of electroless copper to these smooth surfaces.
Designers Notebook: Basic PCB Planning Criteria—Establishing Design Constraints
07/22/2025 | Vern Solberg -- Column: Designer's NotebookPrinted circuit board development flows more smoothly when all critical issues are predefined and understood from the start. As a basic planning strategy, the designer must first consider the product performance criteria, then determine the specific industry standards or specifications that the product must meet. Planning also includes a review of all significant issues that may affect the product’s manufacture, performance, reliability, overall quality, and safety.