Energy-Saving Nano-Surfaces Inspired by Nature
July 5, 2019 | European CommissionEstimated reading time: 1 minute
LiNaBioFluid researchers used electron microscopes to study desert-dwelling horned lizards, which survive in arid conditions by collecting dew through their skin, and flat bark bugs, which change colour to camouflage themselves from predators when they get wet. Close inspection showed that the creatures possess different micro and nanoscale fluid-transporting structures, forming miniscule surface patterns that can drive liquids in a specific direction with the greatest possible efficiency.
By replicating those same organic patterns on steel, titanium and silicon using precision lasers—a process known as biomimicry—the LiNaBioFluid team was able to demonstrate significant improvements in controlled fluid transport. Tests showed that this biomimetic breakthrough reduced the coefficient of friction by 50% in machine components, such as steel shafts lubricated with engine oil, and could enable the production of much more robust and efficient slide bearings for many mechanical applications.
Faster and more effective lubrication means less friction and resistance, reducing energy use and CO2 emissions, while minimising the wear and tear that shortens the lifespan of machines.
More efficient machinery
‘By working together with biologists and laser experts, the project developed a radical new line of biomimicry technology. The results could be very useful for solving everyday engineering problems that would transform the energy efficiency of millions of machines,’ says project coordinator Emmanuel Stratakis of the Foundation for Research and Technology Hellas in Greece.
The researchers also identified medical uses, including laser-engineered titanium implants with biomimetic surface microstructures wetted by blood and body fluids to prevent overgrowth of tissue and cells. This has the potential to reduce the side effects of hip replacement surgery or enable novel implants to treat cardiovascular disease, a discovery now being explored further in the follow-on FET Innovation Launchpad Project CellFreeImplant.
‘We are also looking at other ways in which these new types of biomimetic and nanoscale structures could be used, for example in underwater applications, in high-power device cooling or to separate water and oil,’ Stratakis says. ‘Furthermore, we are studying the unexpected discovery of anti-reflection properties of bio-inspired laser-induced nanostructures. This finding is being patented and will be investigated further in LaBionicS, a second follow-on FET Innovation Launchpad Project.’
Suggested Items
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.